分頁查詢是最經常使用的場景之一,但也一般也是最容易出問題的地方。好比對於下面簡單的語句,通常DBA想到的辦法是在type, name, create_time字段上加組合索引。這樣條件排序都能有效的利用到索引,性能迅速提高。前端
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
ORDER BY create_time
LIMIT 1000, 10;
複製代碼
好吧,可能90%以上的DBA解決該問題就到此爲止。但當 LIMIT 子句變成 「LIMIT 1000000,10」 時,程序員仍然會抱怨:我只取10條記錄爲何仍是慢?mysql
要知道數據庫也並不知道第1000000條記錄從什麼地方開始,即便有索引也須要從頭計算一次。出現這種性能問題,多數情形下是程序員偷懶了。在前端數據瀏覽翻頁,或者大數據分批導出等場景下,是能夠將上一頁的最大值當成參數做爲查詢條件的。SQL從新設計以下:程序員
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
AND create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;
複製代碼
在新設計下查詢時間基本固定,不會隨着數據量的增加而發生變化。算法
SQL語句中查詢變量和字段定義類型不匹配是另外一個常見的錯誤。好比下面的語句:sql
mysql> explain extended SELECT *
> FROM my_balance b
> WHERE b.bpn = 14000000123
> AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
複製代碼
其中字段bpn的定義爲varchar(20),MySQL的策略是將字符串轉換爲數字以後再比較。函數做用於表字段,索引失效。數據庫
上述狀況多是應用程序框架自動填入的參數,而不是程序員的原意。如今應用框架不少很繁雜,使用方便的同時也當心它可能給本身挖坑。bash
雖然MySQL5.6引入了物化特性,但須要特別注意它目前僅僅針對查詢語句的優化。對於更新或刪除須要手工重寫成JOIN。app
好比下面UPDATE語句,MySQL實際執行的是循環/嵌套子查詢(DEPENDENT SUBQUERY),其執行時間可想而知。框架
UPDATE operation o
SET status = 'applying'
WHERE o.id IN (SELECT id
FROM (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t);
複製代碼
執行計劃:函數
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
複製代碼
肯定從語義上查詢條件能夠直接下推後,重寫以下:
SELECT target,
Count(*)
FROM operation
WHERE target = 'rm-xxxx'
GROUP BY target
複製代碼
執行計劃變爲:
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
複製代碼
先上初始SQL語句:
SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
複製代碼
該SQL語句原意是:先作一系列的左鏈接,而後排序取前15條記錄。從執行計劃也能夠看出,最後一步估算排序記錄數爲90萬,時間消耗爲12秒。
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
複製代碼
因爲最後WHERE條件以及排序均針對最左主表,所以能夠先對my_order排序提早縮小數據量再作左鏈接。SQL重寫後以下,執行時間縮小爲1毫秒左右。
SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15
複製代碼
再檢查執行計劃:子查詢物化後(select_type=DERIVED)參與JOIN。雖然估算行掃描仍然爲90萬,可是利用了索引以及LIMIT 子句後,實際執行時間變得很小。
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
複製代碼
再來看下面這個已經初步優化過的例子(左鏈接中的主表優先做用查詢條件):
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
複製代碼
那麼該語句還存在其它問題嗎?不難看出子查詢 c 是全表聚合查詢,在表數量特別大的狀況下會致使整個語句的性能降低。
其實對於子查詢 c,左鏈接最後結果集只關心能和主表resourceid能匹配的數據。所以咱們能夠重寫語句以下,執行時間從原來的2秒降低到2毫秒。
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
複製代碼
可是子查詢 a 在咱們的SQL語句中出現了屢次。這種寫法不只存在額外的開銷,還使得整個語句顯的繁雜。使用WITH語句再次重寫:
WITH a AS
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20)
SELECT a.*,
c.allocated
FROM a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
複製代碼
數據庫編譯器產生執行計劃,決定着SQL的實際執行方式。可是編譯器只是盡力服務,全部數據庫的編譯器都不是盡善盡美的。
上述提到的多數場景,在其它數據庫中也存在性能問題。瞭解數據庫編譯器的特性,才能避規其短處,寫出高性能的SQL語句。
程序員在設計數據模型以及編寫SQL語句時,要把算法的思想或意識帶進來。
編寫複雜SQL語句要養成使用 WITH 語句的習慣。簡潔且思路清晰的SQL語句也能減少數據庫的負擔 。