03. Pandas 2| 時間序列

 時間序列

1.時間模塊:datetime

datetime模塊,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta()數組

日期解析方法:parser.parsedom

datetime.date:date對象

import datetime #也能夠寫成 from datetime import date
today = datetime.date.today()
print(today, type(today)) #2018-08-21 <class 'datetime.date'>
print(str(today), type(str(today)))#2018-08-21 <class 'str'>
t = datetime.date(2018, 12, 8)
print(t)#2018-12-08

 datetime.date.today()  返回今日
 輸出格式爲 date類spa

datetime.datetime:datetime對象

now = datetime.datetime.now()
print(now, type(now)) #2018-08-21 19:22:47.296548 <class 'datetime.datetime'>
print(str(now), type(str(now))) #2018-08-21 19:23:26.139769 <class 'str'>
t1 = datetime.datetime(2018, 8, 1)
t2 = datetime.datetime(2014, 9, 1, 12, 12, 12)
print(t1, t2) #2018-08-01 00:00:00  2014-09-01 12:12:12
print(t1 - t2) #1429 days, 11:47:48

datetime.datetime.now()方法,輸出當前時間
輸出格式爲 datetime類
可經過str()轉化爲字符串code

datetime.timedelta:時間差

today = datetime.datetime.today()
yestoday = today - datetime.timedelta(1) #日 print(today, yestoday) #2018-08-21 19:32:25.068595    2018-08-20 19:32:25.068595
print(today - datetime.timedelta(7)) #2018-08-14 19:32:25.068595

datetime.timedelta() 時間差主要用做時間的加減法,至關於可被識別的時間「差值」orm

parser.parse:日期字符串轉換(parse() 轉換爲datetime類型)

from dateutil.parser import parse
date = '12-15-2018'
t = parse(date)
print(t, type(t))               #2018-12-15 00:00:00  <class 'datetime.datetime'>
print(parse('2009-1-2'),'\n', #2009-01-02 00:00:00
      parse('5/3/2009'),'\n', # 2009-05-03 00:00:00
      parse('5/3/2009',dayfirst = True),'\n', # 2009-03-05 00:00:00 # 國際通用格式中,日在月以前,能夠經過dayfirst來設置,若是是False就是 2009-05-03 00:00:00
      parse('22/1/2014'),'\n',         # 2014-01-22 00:00:00
      parse('Jan 31, 1997 10:45 PM') # 1997-01-31 22:45:00
      )

 

2.Pandas時刻數據(時間點)

時刻數據表明時間點(能夠是一年、一個月、一天、一分鐘、一秒等),是pandas的數據類型,是將值與時間點相關聯的最基本類型的時間序列數據對象

時間戳(timestamp),一個能表示一份數據在某個特定時間以前已經存在的、 完整的、 可驗證的數據,一般是一個字符序列,惟一地標識某一刻的時間。blog

pandas.Timestamp()排序

 pd.Timestamp( )  ---> 單個時間戳-建立方式

datetime.datetime(2016, 12, 2, 22, 15, 59)  datetime類型    |     ‘2018-12-7 12:07:47 ’  字符串類型  只能是單個時間數據 索引

import numpy as np
import pandas as pd
date1 = datetime.datetime(2016,12,1,12,45,30)  #它是datetime類型
date2 = '2018-11-18'                #‘20181118’、‘2/3/2018’、‘2018-11-18 12:08:13’等這些字符串都是能夠識別的
t1 = pd.Timestamp(date1)
t2 = pd.Timestamp(date2)
print(t1, type(t1))           #2016-12-01 12:45:30 <class 'pandas._libs.tslibs.timestamps.Timestamp'>
print(t2)                                      #2018-11-18 00:00:00
print(pd.Timestamp('2017-12-09 15:09:21'))     #2017-12-09 15:09:21

 >>> print(date1, type(date1))
 2016-12-01 12:45:30 <class 'datetime.datetime'>字符串

  直接生成pandas的時刻數據 → 時間戳   數據類型爲 pandas的Timestamp

 pd.to_datetime --    pd.to_datetime→多個時間數據轉換時間戳索引

pd.to_datetime():若是是單個時間數據,轉換成pandas的時刻數據,數據類型爲Timestamp;多個時間數據,將會轉換爲pandas的DatetimeIndex

datetime類型和Timestamp類型的區別;

Timestamp和DatetimeIndex的區別;

轉換爲pandas時刻數據的兩個方法:直接Timestamp、to_datetime

from datetime import datetime
import pandas as pd
date1 = datetime(2018, 12, 2, 12, 24, 30)
date2 = '2017-07-21'
t1 = pd.to_datetime(date1)
t2 = pd.to_datetime(date2)
print(t1, type(t1)) #2018-12-02 12:24:30 <class 'pandas._libs.tslibs.timestamps.Timestamp'> 單個數據跟Timestamp沒什麼區別
print(t2, type(t2)) #2017-07-21 00:00:00 <class 'pandas._libs.tslibs.timestamps.Timestamp'>

lst_date = ['2017-12-9', '2017-10-19', '2018-9-9']                         #若是時間是個序列,多個數據,就有區別了
t3 = pd.to_datetime(lst_date)
print(t3, type(t3)) 
#DatetimeIndex(['2017-12-09', '2017-10-19', '2018-09-09'], dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>

 

pd.to_datetime( data, errors='ignore' | errors='coerce' ) 

>>> import numpy as np
>>> import pandas as pd
>>> from datetime import datetime   #若是不加這句話就要datetime.datetime
>>> date1 = [datetime(2018, 6, 1), datetime(2018, 7,1), datetime(2018,8,1)] #datetime類型 >>> date2 = ['2017-2-1','2017-2-2','2017-2-3','2017-2-4','2017-2-5','2017-2-6'] #列表
>>> print(date1)
[datetime.datetime(2018, 6, 1, 0, 0), datetime.datetime(2018, 7, 1, 0, 0), datetime.datetime(2018, 8, 1, 0, 0)] >>> print(date2) ['2017-2-1', '2017-2-2', '2017-2-3', '2017-2-4', '2017-2-5', '2017-2-6'] >>> t1 = pd.to_datetime(date1) >>> t2 = pd.to_datetime(date2) >>> print(t1) DatetimeIndex(['2018-06-01', '2018-07-01', '2018-08-01'], dtype='datetime64[ns]', freq=None) >>> print(t2) DatetimeIndex(['2017-02-01', '2017-02-02', '2017-02-03', '2017-02-04', '2017-02-05', '2017-02-06'], dtype='datetime64[ns]', freq=None) >>> date3 = ['2017-9-1', '2018-11-10','Hello world!','2018-10-9', '2017-7-1'] >>> t3 = pd.to_datetime(date3, errors='ignore') #加上它就不會去解析它是不是時間序列了 ;當一組時間序列中夾雜其餘格式數據時,可用errors參數返回。
                        #errors = 'ignore':不可解析時返回原始輸入,這裏就是直接生成通常數組
>>> print(t3, type(t3)) ['2017-9-1' '2018-11-10' 'Hello world!' '2018-10-9' '2017-7-1'] <class 'numpy.ndarray'> >>> >>> t4 = pd.to_datetime(date3, errors='coerce') #會把不是時間序列的參數給去掉,當作缺失值,但它已是時間序列了,DatetimeIndex類型
                        # errors = 'coerce':不可擴展,缺失值返回NaT(Not a Time),結果認爲DatetimeIndex
>>> print(t4, type(t4)) DatetimeIndex(['2017-09-01', '2018-11-10', 'NaT', '2018-10-09', '2017-07-01'], dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>

 

3.Pandas時間戳索引

DatetimeIndex

核心:pd.date_range()

3.1 pd.DatetimeIndex() (時間戳索引)與TimeSeries時間序列

 pd.DatatimeIndex([多個時間序列])  

 
rng = pd.DatetimeIndex(['12/1/2018', '12/2/2018', '12/3/2018', '12/4/2018'])
pd.Series(np.random.rand(len(rng)),index = rng) #以DatetimeIndex爲index的Series,爲TimeSeries,時間序列。
>>> rng = pd.DatetimeIndex(['12/1/2018', '12/2/2018', '12/3/2018', '12/4/2018']) #DatetimeIndex這樣一個直接把它變成DatetimeIndex類型的一個方法
>>> print(rng, type(rng))
DatetimeIndex(['2018-12-01', '2018-12-02', '2018-12-03', '2018-12-04'], dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
>>> print(rng[0], type(rng[0]))
2018-12-01 00:00:00 <class 'pandas._libs.tslibs.timestamps.Timestamp'>

>>> # 直接生成時間戳索引,支持str、datetime.datetime
... #rng[0] 單個時間戳爲Timestamp, rng[0:3] 多個時間戳爲DatetimeIndex

>>> st = pd.Series(np.random.rand(len(rng)),index = rng) #以DatetimeIndex爲index的Series,爲TimeSeries,時間序列。 >>> print(st, type(st))
2018-12-01    0.063915
2018-12-02    0.726902
2018-12-03    0.135305
2018-12-04    0.237609
dtype: float64 <class 'pandas.core.series.Series'>
>>> print(st.index)
DatetimeIndex(['2018-12-01', '2018-12-02', '2018-12-03', '2018-12-04'], dtype='datetime64[ns]', freq=None)
>>>

 

3.2 pd.date_range()-日期範圍:生成日期範圍

date_range()  2種生成方式:①start + end; ②start/end + periods

pd.date_range('6/10/2018','10/5/2018') 、  pd.date_range('6/10/2018',periods=10)   、  pd.date_range(end='6/10/2018',periods=10)
默認頻率:day

 直接生成DatetimeIndex
# pd.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs)
# start:開始時間
# end:結束時間
# periods:偏移量
# freq:頻率,默認天,pd.date_range()默認頻率爲日曆日,pd.bdate_range()默認頻率爲工做日
# tz:時區
# normalize 默認False,爲True時就把時間給你變成00:00:00,但不會顯示出來
#rng1 = pd.date_range('12/1/2018', '4/10/2017', normalize=True) #DatetimeIndex([], dtype='datetime64[ns]', freq='D')   <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
rng1 = pd.date_range('1/1/2017','1/10/2017', normalize=True)  #normalize=True就是把時間給你變成00:00:00,但不會顯示出來
rng2 = pd.date_range(start='1/1/2018', periods=10)            #start=也能夠不寫的
rng3 = pd.date_range(end='1/30/2017 14:20:00', periods=10)

>>> print(rng1, type(rng1))
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
               '2017-01-09', '2017-01-10'],
              dtype='datetime64[ns]', freq='D') <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
>>> print(rng2)
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08',
               '2018-01-09', '2018-01-10'],
              dtype='datetime64[ns]', freq='D')
>>> print(rng3)
DatetimeIndex(['2017-01-21 14:20:00', '2017-01-22 14:20:00',
               '2017-01-23 14:20:00', '2017-01-24 14:20:00',
               '2017-01-25 14:20:00', '2017-01-26 14:20:00',
               '2017-01-27 14:20:00', '2017-01-28 14:20:00',
               '2017-01-29 14:20:00', '2017-01-30 14:20:00'],
              dtype='datetime64[ns]', freq='D')

# pd.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs)
# start:開始時間
# end:結束時間
# periods:偏移量
# freq:頻率,默認天,pd.date_range()默認頻率爲日曆日,pd.bdate_range()默認頻率爲工做日
# tz:時區

rng4 = pd.date_range(start='1/1/2017 15:30', periods=10, name='Hello world!', normalize=True) #它就會把15:30歸爲00:00,它不顯示出來。name就是一個參數。
>>> print(rng4)
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
               '2017-01-09', '2017-01-10'],
              dtype='datetime64[ns]', name='Hello world!', freq='D')
>>>

>>> print(pd.date_range('20170101','20170104'))
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')
>>> print(pd.date_range('20170101','20170104',closed='right'))
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')
>>> print(pd.date_range('20170101','20170104',closed='left'))
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq='D')
>>>


>>> print(pd.date_range('20170101','20170107'))
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05',
               '2017-01-06'],
              dtype='datetime64[ns]', freq='B')
>>> print(list(pd.date_range(start='1/1/2017',periods=10)))#由多個時間戳組成的序列 [Timestamp('2017-01-01 00:00:00', freq='D'), Timestamp('2017-01-02 00:00:00', freq='D'), Timestamp('2017-01-03 00:00:00', freq='D'), Timestamp('2017-01-04 00:00:00', freq='D'), Timestamp('2017-01-05 0 0:00:00', freq='D'), Timestamp('2017-01-06 00:00:00', freq='D'), Timestamp('2017-01-07 00:00:00', freq='D'), Timestamp('2017-01-08 00:00:00', freq='D'), Timestamp('2017-01-09 00:00:00', freq='D'), Tim estamp('2017-01-10 00:00:00', freq='D')] >>>

pd.date_range()-日期範圍:freq 頻率(1)

freq = 'B' 、‘H’、T、S、L、U、W-MON、 

>>> print(pd.date_range('2017/1/1','2017/1/4'))                     #默認freq = 'D':每日曆日
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')
>>> print(pd.date_range('2017/1/1','2017/1/4',freq='B'))                # B:每工做日
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='B') 
>>> print(pd.date_range('2017/1/1','2017/1/4',freq='H')) # H:每小時
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 01:00:00',
               '2017-01-01 02:00:00', '2017-01-01 03:00:00',
               '2017-01-01 04:00:00', '2017-01-01 05:00:00',
               '2017-01-01 06:00:00', '2017-01-01 07:00:00',
               '2017-01-01 08:00:00', '2017-01-01 09:00:00',
               '2017-01-01 10:00:00', '2017-01-01 11:00:00',
               '2017-01-01 12:00:00', '2017-01-01 13:00:00',
               '2017-01-01 14:00:00', '2017-01-01 15:00:00',
               '2017-01-01 16:00:00', '2017-01-01 17:00:00',
               '2017-01-01 18:00:00', '2017-01-01 19:00:00',
               '2017-01-01 20:00:00', '2017-01-01 21:00:00',
               '2017-01-01 22:00:00', '2017-01-01 23:00:00',
               '2017-01-02 00:00:00', '2017-01-02 01:00:00',
               '2017-01-02 02:00:00', '2017-01-02 03:00:00',
               '2017-01-02 04:00:00', '2017-01-02 05:00:00',
               '2017-01-02 06:00:00', '2017-01-02 07:00:00',
               '2017-01-02 08:00:00', '2017-01-02 09:00:00',
               '2017-01-02 10:00:00', '2017-01-02 11:00:00',
               '2017-01-02 12:00:00', '2017-01-02 13:00:00',
               '2017-01-02 14:00:00', '2017-01-02 15:00:00',
               '2017-01-02 16:00:00', '2017-01-02 17:00:00',
               '2017-01-02 18:00:00', '2017-01-02 19:00:00',
               '2017-01-02 20:00:00', '2017-01-02 21:00:00',
               '2017-01-02 22:00:00', '2017-01-02 23:00:00',
               '2017-01-03 00:00:00', '2017-01-03 01:00:00',
               '2017-01-03 02:00:00', '2017-01-03 03:00:00',
               '2017-01-03 04:00:00', '2017-01-03 05:00:00',
               '2017-01-03 06:00:00', '2017-01-03 07:00:00',
               '2017-01-03 08:00:00', '2017-01-03 09:00:00',
               '2017-01-03 10:00:00', '2017-01-03 11:00:00',
               '2017-01-03 12:00:00', '2017-01-03 13:00:00',
               '2017-01-03 14:00:00', '2017-01-03 15:00:00',
               '2017-01-03 16:00:00', '2017-01-03 17:00:00',
               '2017-01-03 18:00:00', '2017-01-03 19:00:00',
               '2017-01-03 20:00:00', '2017-01-03 21:00:00',
               '2017-01-03 22:00:00', '2017-01-03 23:00:00',
               '2017-01-04 00:00:00'],
              dtype='datetime64[ns]', freq='H')
>>> print(pd.date_range('2017/1/1 12:00','2017/1/1 12:10',freq='T')) # T/MIN:每分
DatetimeIndex(['2017-01-01 12:00:00', '2017-01-01 12:01:00',
               '2017-01-01 12:02:00', '2017-01-01 12:03:00',
               '2017-01-01 12:04:00', '2017-01-01 12:05:00',
               '2017-01-01 12:06:00', '2017-01-01 12:07:00',
               '2017-01-01 12:08:00', '2017-01-01 12:09:00',
               '2017-01-01 12:10:00'],
              dtype='datetime64[ns]', freq='T')
>>> print(pd.date_range('2017/1/1 12:00:00','2017/1/1 12:00:10',freq='S'))  # S:每秒
DatetimeIndex(['2017-01-01 12:00:00', '2017-01-01 12:00:01',
               '2017-01-01 12:00:02', '2017-01-01 12:00:03',
               '2017-01-01 12:00:04', '2017-01-01 12:00:05',
               '2017-01-01 12:00:06', '2017-01-01 12:00:07',
               '2017-01-01 12:00:08', '2017-01-01 12:00:09',
               '2017-01-01 12:00:10'],
              dtype='datetime64[ns]', freq='S')
>>> print(pd.date_range('2017/1/1 12:00:00','2017/1/1 12:00:10',freq='L')) # L:每毫秒(千分之一秒)
DatetimeIndex([       '2017-01-01 12:00:00', '2017-01-01 12:00:00.001000',
               '2017-01-01 12:00:00.002000', '2017-01-01 12:00:00.003000',
               '2017-01-01 12:00:00.004000', '2017-01-01 12:00:00.005000',
               '2017-01-01 12:00:00.006000', '2017-01-01 12:00:00.007000',
               '2017-01-01 12:00:00.008000', '2017-01-01 12:00:00.009000',
               ...
               '2017-01-01 12:00:09.991000', '2017-01-01 12:00:09.992000',
               '2017-01-01 12:00:09.993000', '2017-01-01 12:00:09.994000',
               '2017-01-01 12:00:09.995000', '2017-01-01 12:00:09.996000',
               '2017-01-01 12:00:09.997000', '2017-01-01 12:00:09.998000',
               '2017-01-01 12:00:09.999000',        '2017-01-01 12:00:10'],
              dtype='datetime64[ns]', length=10001, freq='L')
>>> print(pd.date_range('2017/1/1 12:00:00','2017/1/1 12:00:10',freq='U')) # U:每微秒(百萬分之一秒)
DatetimeIndex([       '2017-01-01 12:00:00', '2017-01-01 12:00:00.000001',
               '2017-01-01 12:00:00.000002', '2017-01-01 12:00:00.000003',
               '2017-01-01 12:00:00.000004', '2017-01-01 12:00:00.000005',
               '2017-01-01 12:00:00.000006', '2017-01-01 12:00:00.000007',
               '2017-01-01 12:00:00.000008', '2017-01-01 12:00:00.000009',
               ...
               '2017-01-01 12:00:09.999991', '2017-01-01 12:00:09.999992',
               '2017-01-01 12:00:09.999993', '2017-01-01 12:00:09.999994',
               '2017-01-01 12:00:09.999995', '2017-01-01 12:00:09.999996',
               '2017-01-01 12:00:09.999997', '2017-01-01 12:00:09.999998',
               '2017-01-01 12:00:09.999999',        '2017-01-01 12:00:10'],
              dtype='datetime64[ns]', length=10000001, freq='U')
>>> print(pd.date_range('2017/1/1','2017/2/1',freq='W-MON'))  #W-MON:從指定星期幾開始算起,每週  星期幾縮寫:MON/TUE/WED/THU/FRI/SAT/SUN
DatetimeIndex(['2017-01-02', '2017-01-09', '2017-01-16', '2017-01-23',
               '2017-01-30'],
              dtype='datetime64[ns]', freq='W-MON')
>>> print(pd.date_range('2017/1/1','2017/5/1',freq='WOM-2MON')) # WOM-2MON:每個月的第幾個星期幾開始算,這裏是每個月第二個星期一
DatetimeIndex(['2017-01-09', '2017-02-13', '2017-03-13', '2017-04-10'], dtype='datetime64[ns]', freq='WOM-2MON')
>>>

pd.date_range()-日期範圍:freq 頻率(2)

freq = 'M'、'Q-DEC'、‘A-DEC’、‘BM’、‘BQ-DEC’、‘BA-DEC’ 、'MS' 、‘QS-DEC’、‘AS-DEC’、‘BMS’、‘BQS-DEC’ 、‘BAS-DEC’ 

##########某個時刻的最後一個日曆日
>>> print(pd.date_range('2017','2018',freq='M')) # M:每個月最後一個日曆日 DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-30', '2017-05-31', '2017-06-30', '2017-07-31', '2017-08-31', '2017-09-30', '2017-10-31', '2017-11-30', '2017-12-31'], dtype='datetime64[ns]', freq='M') >>> print(pd.date_range('2017','2020',freq='Q-DEC')) # Q-月:指定月爲季度末,每一個季度末最後一月的最後一個日曆日 因此Q-月只有三種狀況:1-4-7-10,2-5-8-11,3-6-9-12 DatetimeIndex(['2017-03-31', '2017-06-30', '2017-09-30', '2017-12-31', '2018-03-31', '2018-06-30', '2018-09-30', '2018-12-31', '2019-03-31', '2019-06-30', '2019-09-30', '2019-12-31'], dtype='datetime64[ns]', freq='Q-DEC') >>> print(pd.date_range('2017','2020',freq='A-DEC')) # A-月:每一年指定月份的最後一個日曆日 # 月縮寫:JAN/FEB/MAR/APR/MAY/JUN/JUL/AUG/SEP/OCT/NOV/DEC DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>>#################某個時刻的最後工做日 >>> print(pd.date_range('2017','2020',freq='BM')) # BM:每個月最後一個工做日 DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-28', '2017-05-31', '2017-06-30', '2017-07-31', '2017-08-31', '2017-09-29', '2017-10-31', '2017-11-30', '2017-12-29', '2018-01-31', '2018-02-28', '2018-03-30', '2018-04-30', '2018-05-31', '2018-06-29', '2018-07-31', '2018-08-31', '2018-09-28', '2018-10-31', '2018-11-30', '2018-12-31', '2019-01-31', '2019-02-28', '2019-03-29', '2019-04-30', '2019-05-31', '2019-06-28', '2019-07-31', '2019-08-30', '2019-09-30', '2019-10-31', '2019-11-29', '2019-12-31'], dtype='datetime64[ns]', freq='BM') >>> print(pd.date_range('2017','2020',freq='BQ-DEC')) # BQ-月:指定月爲季度末,每一個季度末最後一月的最後一個工做日 DatetimeIndex(['2017-03-31', '2017-06-30', '2017-09-29', '2017-12-29', '2018-03-30', '2018-06-29', '2018-09-28', '2018-12-31', '2019-03-29', '2019-06-28', '2019-09-30', '2019-12-31'], dtype='datetime64[ns]', freq='BQ-DEC') >>> print(pd.date_range('2017','2020',freq='BA-DEC')) # BA-月:每一年指定月份的最後一個工做日 DatetimeIndex(['2017-12-29', '2018-12-31', '2019-12-31'], dtype='datetime64[ns]', freq='BA-DEC') >>> ################某個時刻的第一個日曆日 >>> print(pd.date_range('2017','2018',freq='MS')) # M:每個月第一個日曆日 DatetimeIndex(['2017-01-01', '2017-02-01', '2017-03-01', '2017-04-01', '2017-05-01', '2017-06-01', '2017-07-01', '2017-08-01', '2017-09-01', '2017-10-01', '2017-11-01', '2017-12-01', '2018-01-01'], dtype='datetime64[ns]', freq='MS') >>> print(pd.date_range('2017','2020',freq='QS-DEC')) # Q-月:指定月爲季度末,每一個季度末最後一月的第一個日曆日 DatetimeIndex(['2017-03-01', '2017-06-01', '2017-09-01', '2017-12-01', '2018-03-01', '2018-06-01', '2018-09-01', '2018-12-01', '2019-03-01', '2019-06-01', '2019-09-01', '2019-12-01'], dtype='datetime64[ns]', freq='QS-DEC') >>> print(pd.date_range('2017','2020',freq='AS-DEC')) # A-月:每一年指定月份的第一個日曆日 DatetimeIndex(['2017-12-01', '2018-12-01', '2019-12-01'], dtype='datetime64[ns]', freq='AS-DEC') >>>##############某個時刻的第一個日曆日 >>> print(pd.date_range('2017','2018',freq='BMS')) # BM:每個月第一個工做日 DatetimeIndex(['2017-01-02', '2017-02-01', '2017-03-01', '2017-04-03', '2017-05-01', '2017-06-01', '2017-07-03', '2017-08-01', '2017-09-01', '2017-10-02', '2017-11-01', '2017-12-01', '2018-01-01'], dtype='datetime64[ns]', freq='BMS') >>> print(pd.date_range('2017','2020',freq='BQS-DEC')) # BQ-月:指定月爲季度末,每一個季度末最後一月的第一個工做日 DatetimeIndex(['2017-03-01', '2017-06-01', '2017-09-01', '2017-12-01', '2018-03-01', '2018-06-01', '2018-09-03', '2018-12-03', '2019-03-01', '2019-06-03', '2019-09-02', '2019-12-02'], dtype='datetime64[ns]', freq='BQS-DEC') >>> print(pd.date_range('2017','2020',freq='BAS-DEC')) # BA-月:每一年指定月份的第一個工做日 DatetimeIndex(['2017-12-01', '2018-12-03', '2019-12-02'], dtype='datetime64[ns]', freq='BAS-DEC') >>>

pd.date_range()-日期範圍:freq 複合頻率

freq = '7D' 、‘2M’ 、‘2h30min’

>>> print(pd.date_range('2017/1/1','2017/2/1',freq='7D'))  # 7天
DatetimeIndex(['2017-01-01', '2017-01-08', '2017-01-15', '2017-01-22',
               '2017-01-29'],
              dtype='datetime64[ns]', freq='7D')
>>> print(pd.date_range('2017/1/1','2017/1/2',freq='2h30min')) # 2小時30分鐘
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 02:30:00',
               '2017-01-01 05:00:00', '2017-01-01 07:30:00',
               '2017-01-01 10:00:00', '2017-01-01 12:30:00',
               '2017-01-01 15:00:00', '2017-01-01 17:30:00',
               '2017-01-01 20:00:00', '2017-01-01 22:30:00'],
              dtype='datetime64[ns]', freq='150T')
>>> print(pd.date_range('2017','2018',freq='2M'))  # 2月,每個月最後一個日曆日
DatetimeIndex(['2017-01-31', '2017-03-31', '2017-05-31', '2017-07-31',
               '2017-09-30', '2017-11-30'],
              dtype='datetime64[ns]', freq='2M')
>>>

asfreq:時期頻率轉換

ts.asfreq('4H', method='ffill') 

>>> ts = pd.Series(np.random.rand(4),index=pd.date_range('20170101','20170104'))
>>> print(ts)
2017-01-01    0.516999
2017-01-02    0.882315
2017-01-03    0.775276
2017-01-04    0.440545
Freq: D, dtype: float64
>>>
>>> print(ts.asfreq('4H'))
2017-01-01 00:00:00    0.516999
2017-01-01 04:00:00         NaN
2017-01-01 08:00:00         NaN
2017-01-01 12:00:00         NaN
2017-01-01 16:00:00         NaN
2017-01-01 20:00:00         NaN
2017-01-02 00:00:00    0.882315
2017-01-02 04:00:00         NaN
2017-01-02 08:00:00         NaN
2017-01-02 12:00:00         NaN
2017-01-02 16:00:00         NaN
2017-01-02 20:00:00         NaN
2017-01-03 00:00:00    0.775276
2017-01-03 04:00:00         NaN
2017-01-03 08:00:00         NaN
2017-01-03 12:00:00         NaN
2017-01-03 16:00:00         NaN
2017-01-03 20:00:00         NaN
2017-01-04 00:00:00    0.440545
Freq: 4H, dtype: float64
>>> print(ts.asfreq('4H',method='ffill'))  #改變頻率,這裏是D改成4H;   method:插值模式,None不插值,ffill用以前的值填充,bfill用以後的值填充。 2017-01-01 00:00:00    0.516999
2017-01-01 04:00:00    0.516999
2017-01-01 08:00:00    0.516999
2017-01-01 12:00:00    0.516999
2017-01-01 16:00:00    0.516999
2017-01-01 20:00:00    0.516999
2017-01-02 00:00:00    0.882315
2017-01-02 04:00:00    0.882315
2017-01-02 08:00:00    0.882315
2017-01-02 12:00:00    0.882315
2017-01-02 16:00:00    0.882315
2017-01-02 20:00:00    0.882315
2017-01-03 00:00:00    0.775276
2017-01-03 04:00:00    0.775276
2017-01-03 08:00:00    0.775276
2017-01-03 12:00:00    0.775276
2017-01-03 16:00:00    0.775276
2017-01-03 20:00:00    0.775276
2017-01-04 00:00:00    0.440545
Freq: 4H, dtype: float64

>>> print(ts.asfreq('4H',method='bfill'))
2017-01-01 00:00:00    0.516999
2017-01-01 04:00:00    0.882315
2017-01-01 08:00:00    0.882315
2017-01-01 12:00:00    0.882315
2017-01-01 16:00:00    0.882315
2017-01-01 20:00:00    0.882315
2017-01-02 00:00:00    0.882315
2017-01-02 04:00:00    0.775276
2017-01-02 08:00:00    0.775276
2017-01-02 12:00:00    0.775276
2017-01-02 16:00:00    0.775276
2017-01-02 20:00:00    0.775276
2017-01-03 00:00:00    0.775276
2017-01-03 04:00:00    0.440545
2017-01-03 08:00:00    0.440545
2017-01-03 12:00:00    0.440545
2017-01-03 16:00:00    0.440545
2017-01-03 20:00:00    0.440545
2017-01-04 00:00:00    0.440545
Freq: 4H, dtype: float64

pd.date_range()-日期範圍:超前/ 滯後數據 .shift( )

 ts.shift(1) 把昨天的數據移動     ts.shift(1, freq = 'D')對時間戳進行移動而不是數值了

>>> ts = pd.Series(np.random.rand(4),index=pd.date_range('20170101','20170104'))
>>> print(ts)
2017-01-01    0.421724
2017-01-02    0.102916
2017-01-03    0.411452
2017-01-04    0.626978
Freq: D, dtype: float64
>>> print(ts.shift(2)) # 正數:數值後移(滯後);負數:數值前移(超前)
2017-01-01         NaN
2017-01-02         NaN
2017-01-03    0.421724
2017-01-04    0.102916
Freq: D, dtype: float64
>>> print(ts.shift(-2))
2017-01-01    0.411452
2017-01-02    0.626978
2017-01-03         NaN
2017-01-04         NaN
Freq: D, dtype: float64
>>>
>>> per = ts/ts.shift(1) - 1  #計算變化百分比,這裏計算:該時間戳與上一個時間戳相比,變化百分比;ts爲今天的數據,ts.shift(1)爲昨天的數據,ts/ts.shift(1)爲百分比。再-1就是變化百分比了。
>>> print(per)
2017-01-01         NaN
2017-01-02   -0.755963
2017-01-03    2.997923
2017-01-04    0.523818
Freq: D, dtype: float64
>>>
>>> print(ts.shift(2,freq='D')) #加上freq參數:對時間戳進行位移,而不是對數值進行位移
2017-01-03    0.421724
2017-01-04    0.102916
2017-01-05    0.411452
2017-01-06    0.626978
Freq: D, dtype: float64
>>> print(ts.shift(2,freq='T'))
2017-01-01 00:02:00    0.421724
2017-01-02 00:02:00    0.102916
2017-01-03 00:02:00    0.411452
2017-01-04 00:02:00    0.626978
Freq: D, dtype: float64
>>>

4.Pandas時期:Period

pd.Period()

核心:pd.Period()  ---->時間段、時間構造器;    時間節面、時間戳、每一個時期

pd.Period()參數:一個時間戳 + freq 參數 → freq 用於指明該 period 的長度,時間戳則說明該 period 在時間軸上的位置。

pd.Period('2017',freq = 'M') + 1  
##pd.Period()建立時期 
>>> p = pd.Period('2017',freq = 'M') # 生成一個以2017-01開始,月爲頻率的時間構造器 >>> t = pd.DatetimeIndex(['2017-1-1']) >>> print(p, type(p)) 2017-01 <class 'pandas._libs.tslibs.period.Period'> >>> print(t, type(t)) DatetimeIndex(['2017-01-01'], dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'> >>> >>> print(p + 1) # 經過加減整數,將週期總體移動 2017-02 >>> print(p - 2) 2016-11 >>> print(pd.Period('2012',freq = 'A-DEC') - 1) #這裏是按照 月、年 移動 2011 >>>

 pd.period_range() 建立時期範圍 

  Period('2011', freq = 'A-DEC')能夠當作多個時間期的時間段中的遊標

pd.Period('2017',freq = 'M') + 1 ;Period()和period_range()是兩種不一樣的索引方式,一個爲時間戳、另一個爲時期。
pd.period_range('1/1/2011', '1/1/2012', freq='M') 、pd.date_range('1/1/2011', '1/1/2012',freq='M')
period_range爲PeriodIndex類型包含年月,沒有日哦; date_range爲DatetimeIndex類型,包含年月日;
Timestamp、DatetimeIndex都表示一個時間戳,是一個時間截面;Period是一個時期,是一個時間段!!但二者做爲index時區別不大
##period_range()建立時期範圍
>>> prng = pd.period_range('1/1/2011', '1/1/2012', freq='M') #只包含年、月 >>> rng = pd.date_range('1/1/2011', '1/1/2012',freq='M') #包含年、月、日 >>> print(prng, type(prng)) PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06', #以前叫DatetimeIndex '2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12', '2012-01'], dtype='period[M]', freq='M') <class 'pandas.core.indexes.period.PeriodIndex'> >>> print(rng, type(rng)) DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30', '2011-05-31', '2011-06-30', '2011-07-31', '2011-08-31', '2011-09-30', '2011-10-31', '2011-11-30', '2011-12-31'], dtype='datetime64[ns]', freq='M') <class 'pandas.core.indexes.datetimes.DatetimeIndex'> >>> >>> print(prng[0], type(prng[0])) #數據格式爲PeriodIndex,單個數值爲Period 2011-01 <class 'pandas._libs.tslibs.period.Period'> >>> >>> ts = pd.Series(np.random.rand(len(prng)),index=prng) #二者做爲index時區別不大 >>> ts2 = pd.Series(np.random.rand(len(rng)),index=rng) >>> print(ts, type(ts)) 2011-01 0.889509 2011-02 0.967148 2011-03 0.579234 2011-04 0.409504 2011-05 0.180216 2011-06 0.004549 2011-07 0.606768 2011-08 0.599321 2011-09 0.281182 2011-10 0.383243 2011-11 0.437894 2011-12 0.099335 2012-01 0.125945 Freq: M, dtype: float64 <class 'pandas.core.series.Series'> >>> print(ts2, type(ts2)) 2011-01-31 0.058635 2011-02-28 0.899287 2011-03-31 0.806039 2011-04-30 0.520745 2011-05-31 0.855713 2011-06-30 0.057417 2011-07-31 0.508203 2011-08-31 0.846018 2011-09-30 0.465259 2011-10-31 0.535451 2011-11-30 0.630897 2011-12-31 0.031109 Freq: M, dtype: float64 <class 'pandas.core.series.Series'> >>> print(ts.index) # 時間序列 PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06', '2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12', '2012-01'], dtype='period[M]', freq='M') >>> print(ts2.index) DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30', '2011-05-31', '2011-06-30', '2011-07-31', '2011-08-31', '2011-09-30', '2011-10-31', '2011-11-30', '2011-12-31'], dtype='datetime64[ns]', freq='M') >>> >>>

asfreq:頻率轉換

 經過p.asfreq( freq,  method=None, how=None)方法轉換成別的頻率 

>>> p = pd.Period('2017','A-DEC') >>> print(p)
2017
>>> print(p.asfreq('M',how = 'start')) #也能夠寫成how = 's'
2017-01
>>> print(p.asfreq('D',how = 'end')) #也能夠寫成how = 'e'
2017-12-31
>>>
>>> prng = pd.period_range('2017', '2018', freq='M') >>> ts1 = pd.Series(np.random.rand(len(prng)),index=prng)
>>> print(ts1.head(), len(ts1))
2017-01    0.061827
2017-02    0.138509
2017-03    0.862916
2017-04    0.226967
2017-05    0.910585
Freq: M, dtype: float64 13
>>> ts2 = pd.Series(np.random.rand(len(prng)),index=prng.asfreq('D',how = 'start')) asfreq也能夠轉換爲TimeSeries的index
>>> print(ts2.head(), len(ts2))
2017-01-01    0.476774
2017-02-01    0.625230
2017-03-01    0.281017
2017-04-01    0.165561
2017-05-01    0.429782
Freq: D, dtype: float64 13

時間戳與時期之間的轉換:pd.to_period()、pd.to_timestamp()

ts.to_period()  轉化爲每個月最後一日;  ts.timestamp() 轉化爲每個月第一日

rng.to_period() 將 原來的DatetimeIndex轉化爲PeriodIndex;    prng.to_timestamp() 將PeriodIndex轉化爲DatetimeIndex

>>> rng = pd.date_range('2017/1/1',periods = 10, freq = 'M')
>>> prng = pd.period_range('2017','2018',freq = 'M')
>>> ts1 = pd.Series(np.random.rand(len(rng)),index=rng)
>>> print(ts1.head())
2017-01-31    0.735182
2017-02-28    0.791190
2017-03-31    0.366768
2017-04-30    0.316335
2017-05-31    0.909333
Freq: M, dtype: float64
>>> print(ts1.to_period().head()) # 每個月最後一日,轉化爲每個月
2017-01    0.735182
2017-02    0.791190
2017-03    0.366768
2017-04    0.316335
2017-05    0.909333
Freq: M, dtype: float64
>>>
>>> ts1 = pd.Series(np.random.rand(len(prng)),index=prng)
>>> print(ts2.head())
2017-01-01    0.476774
2017-02-01    0.625230
2017-03-01    0.281017
2017-04-01    0.165561
2017-05-01    0.429782
Freq: D, dtype: float64
>>> print(ts2.to_timestamp().head()) #每個月,轉化爲每個月第一天 2017-01-01    0.476774
2017-02-01    0.625230
2017-03-01    0.281017
2017-04-01    0.165561
2017-05-01    0.429782
Freq: MS, dtype: float64
>>>

 

 5.時間序列TimeSeries - 索引及切片

TimeSeries是Series的一個子類,因此Series索引及數據選取方面的方法基本同樣

同時TimeSeries經過時間序列有更便捷的方法作索引和切片

pd.Series(np.random.rand(len(pd.period_range('1/1/2011', '1/1/2012'))),index=(pd.period_range('1/1/2011', '1/1/2012')))
pd.Series(np.random.rand(len(pd.date_range('2017/1','2017/3'))),index=(pd.date_range('2017/1','2017/3')))

索引   ts[0]    ts[:2]下標位置索引       ts[ '2017/1/2' ]時間序列標籤索引 

>>> rng = pd.date_range('2017/1','2017/3')
>>> ts = pd.Series(np.random.rand(len(rng)),index=rng)
>>> print(ts.head())
2017-01-01    0.407246
2017-01-02    0.104561
2017-01-03    0.140087
2017-01-04    0.988668
2017-01-05    0.733602
Freq: D, dtype: float64
>>> print(ts[0])
0.40724601715639686
>>> print(ts[:2])   # 基本下標位置索引,末端取不到
2017-01-01    0.407246
2017-01-02    0.104561
Freq: D, dtype: float64
>>>
>>> print(ts['2017/1/2'])
0.10456068527347884
>>> print(ts['20170103'])
0.14008702206007018
>>> print(ts['1/10/2017'])
0.7621543091477885
>>> print(ts[datetime(2017,1,20)]) # 時間序列標籤索引,支持各類時間字符串,以及datetime.datetime
0.8743928943800818
>>>

時間序列因爲按照時間前後排序,故不用考慮順序問題
 索引方法一樣適用於Dataframe

切片 ts['2017/1/5: 2017/1/10' ]按照index索引原理,末端包含哦

>>> rng = pd.date_range('2017/1','2017/3',freq = '12H')
>>> ts = pd.Series(np.random.rand(len(rng)), index = rng)
>>> print(ts['2017/1/5':'2017/1/10'])  # 和Series按照index索引原理同樣 ,也是末端包含; 也能夠加 ts.loc['2017/1/5':'2017/1/10']
2017-01-05 00:00:00    0.864954
2017-01-05 12:00:00    0.270408
2017-01-06 00:00:00    0.979987
2017-01-06 12:00:00    0.426279
2017-01-07 00:00:00    0.403995
2017-01-07 12:00:00    0.731792
2017-01-08 00:00:00    0.018432
2017-01-08 12:00:00    0.728155
2017-01-09 00:00:00    0.190817
2017-01-09 12:00:00    0.501240
2017-01-10 00:00:00    0.893398
2017-01-10 12:00:00    0.977586
Freq: 12H, dtype: float64
>>>
>>> print(ts['2017/2'].head()) # 傳入月,直接獲得一個切片; print(ts['1/2017'] 會把1月給你所有顯示出來 能夠直接切片.[::2]
2017-02-01 00:00:00    0.635405
2017-02-01 12:00:00    0.282502
2017-02-02 00:00:00    0.774583
2017-02-02 12:00:00    0.306548
2017-02-03 00:00:00    0.817818
Freq: 12H, dtype: float64
>>>

重複索引的時間序列

 ts.is_unique 若是values值惟一,但index值不惟一,一樣也會返回True;

>>> dates = pd.DatetimeIndex(['1/1/2015','1/2/2015','1/3/2015','1/4/2015','1/1/2015','1/2/2015'])
>>> ts = pd.Series(np.random.rand(6), index = dates)
>>> print(ts)
2015-01-01    0.943037
2015-01-02    0.426762
2015-01-03    0.838297
2015-01-04    0.963703
2015-01-01    0.080439
2015-01-02    0.997752
dtype: float64
>>> print(ts.is_unique,ts.index.is_unique)  # index有重複,values沒有重複的; is_unique是檢查 → values惟一,index不惟一就返回True。
True False
>>> print(ts['20150101'],type(ts['20150101'])) # index有重複的將返回多個值 2015-01-01    0.943037
2015-01-01    0.080439
dtype: float64 <class 'pandas.core.series.Series'>
>>> print(ts['20150104'],type(ts['20150104']))
2015-01-04    0.963703
dtype: float64 <class 'pandas.core.series.Series'>
>>> print(ts.groupby(level = 0).mean())  # 經過groupby作分組,重複的值這裏用平均值處理 2015-01-01    0.511738
2015-01-02    0.712257
2015-01-03    0.838297
2015-01-04    0.963703
dtype: float64
>>>

6.時間序列 - 重採樣

從一個頻率轉化爲另一個頻率,並且會有數據的聚合

將時間序列從一個頻率轉換爲另外一個頻率的過程,且會有數據的結合

降採樣:高頻數據 → 低頻數據,eg.以天爲頻率的數據轉爲以月爲頻率的數據
升採樣:低頻數據 → 高頻數據,eg.以年爲頻率的數據轉爲以月爲頻率的數據

重採樣:.resample()

建立一個以天爲頻率的TimeSeries,重採樣爲按2天爲頻率

ts.resample('2D').sum()   / .mean()  /.max() / .min() / .median() / .first() / .last() / .ohlc() 

>>> rng = pd.date_range('20170101', periods = 12)
>>> ts = pd.Series(np.arange(12), index = rng)
>>> print(ts)
2017-01-01     0
2017-01-02     1
2017-01-03     2
2017-01-04     3
2017-01-05     4
2017-01-06     5
2017-01-07     6
2017-01-08     7
2017-01-09     8
2017-01-10     9
2017-01-11    10
2017-01-12    11
Freq: D, dtype: int32
>>> ts_re = ts.resample('5D')  #按照5天作一個重採樣  ts.resample('5D'):  獲得一個重採樣構建器,頻率改成5天  freq:重採樣頻率 → ts.resample('5D')
>>> ts_re2 = ts.resample('5D').sum() #作聚合,加個sum()  ts.resample('5D').sum():獲得一個新的聚合後的Series,聚合方式爲求和   .sum():聚合方法
>>> print(ts_re, type(ts_re))  #獲得的是一個構建器,並非一個值
DatetimeIndexResampler [freq=<5 * Days>, axis=0, closed=left, label=left, convention=start, base=0] <class 'pandas.core.resample.DatetimeIndexResampler'>
>>> print(ts_re2, type(ts_re2))
2017-01-01    10
2017-01-06    35
2017-01-11    21
dtype: int32 <class 'pandas.core.series.Series'>
>>> print(ts.resample('5D').mean(),'→ 求平均值\n')
2017-01-01     2.0
2017-01-06     7.0
2017-01-11    10.5
dtype: float64 → 求平均值

>>> print(ts.resample('5D').max(),'→ 求最大值\n')
2017-01-01     4
2017-01-06     9
2017-01-11    11
dtype: int32 → 求最大值

>>> print(ts.resample('5D').min(),'→ 求最小值\n')
2017-01-01     0
2017-01-06     5
2017-01-11    10
dtype: int32 → 求最小值

>>> print(ts.resample('5D').median(),'→ 求中值\n')
2017-01-01     2.0
2017-01-06     7.0
2017-01-11    10.5
dtype: float64 → 求中值

>>> print(ts.resample('5D').first(),'→ 返回第一個值\n')
2017-01-01     0
2017-01-06     5
2017-01-11    10
dtype: int32 → 返回第一個值

>>> print(ts.resample('5D').last(),'→ 返回最後一個值\n')
2017-01-01     4
2017-01-06     9
2017-01-11    11
dtype: int32 → 返回最後一個值

>>> print(ts.resample('5D').ohlc(),'→ OHLC重採樣\n')  # OHLC:金融領域的時間序列聚合方式 → open開盤、high最大值、low最小值、close收盤
            open  high  low  close
2017-01-01     0     4    0      4
2017-01-06     5     9    5      9
2017-01-11    10    11   10     11 → OHLC重採樣

降採樣

ts.resample('5D', closed = 'left').sum() , #closed='left'爲默認值也能夠不寫; left指定間隔左邊爲結束 → [1,2,3,4,5],[6,7,8,9,10],[11,12]
ts.resample('5D', closed = 'right').sum(),  #closed='right' right指定間隔右邊爲結束 → [1],[2,3,4,5,6],[7,8,9,10,11],[12]
 
>>> rng = pd.date_range('20170101', periods = 12)
>>> ts = pd.Series(np.arange(1,13), index = rng)
>>> print(ts)
2017-01-01     1
2017-01-02     2
2017-01-03     3
2017-01-04     4
2017-01-05     5
2017-01-06     6
2017-01-07     7
2017-01-08     8
2017-01-09     9
2017-01-10    10
2017-01-11    11
2017-01-12    12
Freq: D, dtype: int32
>>> print(ts.resample('5D').sum(),'→ 默認\n') # 詳解:這裏values爲0-11,按照5D重採樣 → [1,2,3,4,5],[6,7,8,9,10],[11,12]
2017-01-01    15
2017-01-06    40
2017-01-11    23
dtype: int32 → 默認
# closed:各時間段哪一端是閉合(即包含)的,默認 左閉右閉 >>> print(ts.resample('5D', closed = 'left').sum(),'→ left\n') # left指定間隔左邊爲結束 → [1,2,3,4,5],[6,7,8,9,10],[11,12]
2017-01-01    15
2017-01-06    40
2017-01-11    23
dtype: int32 → left

>>> print(ts.resample('5D', closed = 'right').sum(),'→ right\n') # right指定間隔右邊爲結束 → [1],[2,3,4,5,6],[7,8,9,10,11],[12]
2016-12-27     1
2017-01-01    20
2017-01-06    45
2017-01-11    12
dtype: int32 → right

>>> print(ts.resample('5D', label = 'left').sum(),'→ leftlabel\n')  # label:聚合值的index,默認爲分組以後的取左 # 值採樣認爲默認(這裏closed默認)
2017-01-01    15
2017-01-06    40
2017-01-11    23
dtype: int32 → leftlabel

>>> print(ts.resample('5D', label = 'right').sum(),'→ rightlabel\n')  #index標籤取重採樣以後的那個2017-01-06,left是默認的取2017-01-01
2017-01-06    15
2017-01-11    40
2017-01-16    23
dtype: int32 → rightlabel

>>>

升採樣及插值

ts.resample('15T').asfreq() 低頻轉高頻, .asfreq():不作填充,返回Nan;   .ffill():向上填充 ;  .bfill():向下填充
>>> rng = pd.date_range('2017/1/1 0:0:0', periods = 5, freq = 'H')
>>> ts = pd.DataFrame(np.arange(15).reshape(5,3),
...                   index = rng,
...                   columns = ['a','b','c'])
>>> print(ts)
                      a   b   c
2017-01-01 00:00:00   0   1   2
2017-01-01 01:00:00   3   4   5
2017-01-01 02:00:00   6   7   8
2017-01-01 03:00:00   9  10  11
2017-01-01 04:00:00  12  13  14
>>> print(ts.resample('15T').asfreq())  # 低頻轉高頻,主要是如何插值 # .asfreq():不作填充,返回Nan
                        a     b     c
2017-01-01 00:00:00   0.0   1.0   2.0
2017-01-01 00:15:00   NaN   NaN   NaN
2017-01-01 00:30:00   NaN   NaN   NaN
2017-01-01 00:45:00   NaN   NaN   NaN
2017-01-01 01:00:00   3.0   4.0   5.0
2017-01-01 01:15:00   NaN   NaN   NaN
2017-01-01 01:30:00   NaN   NaN   NaN
2017-01-01 01:45:00   NaN   NaN   NaN
2017-01-01 02:00:00   6.0   7.0   8.0
2017-01-01 02:15:00   NaN   NaN   NaN
2017-01-01 02:30:00   NaN   NaN   NaN
2017-01-01 02:45:00   NaN   NaN   NaN
2017-01-01 03:00:00   9.0  10.0  11.0
2017-01-01 03:15:00   NaN   NaN   NaN
2017-01-01 03:30:00   NaN   NaN   NaN
2017-01-01 03:45:00   NaN   NaN   NaN
2017-01-01 04:00:00  12.0  13.0  14.0
>>> print(ts.resample('15T').ffill())  # .ffill():向上填充
                      a   b   c
2017-01-01 00:00:00   0   1   2
2017-01-01 00:15:00   0   1   2
2017-01-01 00:30:00   0   1   2
2017-01-01 00:45:00   0   1   2
2017-01-01 01:00:00   3   4   5
2017-01-01 01:15:00   3   4   5
2017-01-01 01:30:00   3   4   5
2017-01-01 01:45:00   3   4   5
2017-01-01 02:00:00   6   7   8
2017-01-01 02:15:00   6   7   8
2017-01-01 02:30:00   6   7   8
2017-01-01 02:45:00   6   7   8
2017-01-01 03:00:00   9  10  11
2017-01-01 03:15:00   9  10  11
2017-01-01 03:30:00   9  10  11
2017-01-01 03:45:00   9  10  11
2017-01-01 04:00:00  12  13  14
>>> print(ts.resample('15T').bfill()) # .bfill():向下填充
                      a   b   c
2017-01-01 00:00:00   0   1   2
2017-01-01 00:15:00   3   4   5
2017-01-01 00:30:00   3   4   5
2017-01-01 00:45:00   3   4   5
2017-01-01 01:00:00   3   4   5
2017-01-01 01:15:00   6   7   8
2017-01-01 01:30:00   6   7   8
2017-01-01 01:45:00   6   7   8
2017-01-01 02:00:00   6   7   8
2017-01-01 02:15:00   9  10  11
2017-01-01 02:30:00   9  10  11
2017-01-01 02:45:00   9  10  11
2017-01-01 03:00:00   9  10  11
2017-01-01 03:15:00  12  13  14
2017-01-01 03:30:00  12  13  14
2017-01-01 03:45:00  12  13  14
2017-01-01 04:00:00  12  13  14
>>>

時期重採樣 - Period

>>> prng = pd.period_range('2016','2017',freq = 'M')
>>> ts = pd.Series(np.arange(len(prng)), index = prng)
>>> print(ts)
2016-01     0
2016-02     1
2016-03     2
2016-04     3
2016-05     4
2016-06     5
2016-07     6
2016-08     7
2016-09     8
2016-10     9
2016-11    10
2016-12    11
2017-01    12
Freq: M, dtype: int32 
>>> print(ts.resample('3M').sum()) #降採樣 2016-01-31     0
2016-04-30     6
2016-07-31    15
2016-10-31    24
2017-01-31    33
Freq: 3M, dtype: int32
>>> print(ts.resample('15D').ffill())  # 升採樣
2016-01-01     0
2016-01-16     0
2016-01-31     0
2016-02-15     1
2016-03-01     2
2016-03-16     2
2016-03-31     2
2016-04-15     3
2016-04-30     3
2016-05-15     4
2016-05-30     4
2016-06-14     5
2016-06-29     5
2016-07-14     6
2016-07-29     6
2016-08-13     7
2016-08-28     7
2016-09-12     8
2016-09-27     8
2016-10-12     9
2016-10-27     9
2016-11-11    10
2016-11-26    10
2016-12-11    11
2016-12-26    11
2017-01-10    12
2017-01-25    12
Freq: 15D, dtype: int32
>>>
相關文章
相關標籤/搜索