Nightmare Ⅱ(雙向BFS)

Problem Description

Last night, little erriyue had a horrible nightmare. He dreamed that he and his girl friend were trapped in a big maze separately. More terribly, there are two ghosts in the maze. They will kill the people. Now little erriyue wants to know if he could find his girl friend before the ghosts find them.
You may suppose that little erriyue and his girl friend can move in 4 directions. In each second, little erriyue can move 3 steps and his girl friend can move 1 step. The ghosts are evil, every second they will divide into several parts to occupy the grids within 2 steps to them until they occupy the whole maze. You can suppose that at every second the ghosts divide firstly then the little erriyue and his girl friend start to move, and if little erriyue or his girl friend arrive at a grid with a ghost, they will die.
Note: the new ghosts also can devide as the original ghost.

Input

The input starts with an integer T, means the number of test cases.
Each test case starts with a line contains two integers n and m, means the size of the maze. (1<n, m<800)
The next n lines describe the maze. Each line contains m characters. The characters may be:
‘.’ denotes an empty place, all can walk on.
‘X’ denotes a wall, only people can’t walk on.
‘M’ denotes little erriyue
‘G’ denotes the girl friend.
‘Z’ denotes the ghosts.
It is guaranteed that will contain exactly one letter M, one letter G and two letters Z.

Output

Output a single integer S in one line, denotes erriyue and his girlfriend will meet in the minimum time S if they can meet successfully, or output -1 denotes they failed to meet.

SampleInput

3
5 6
XXXXXX
XZ..ZX
XXXXXX
M.G...
......
5 6
XXXXXX
XZZ..X
XXXXXX
M.....
..G...

10 10
..........
..X.......
..M.X...X.
X.........
.X..X.X.X.
.........X
..XX....X.
X....G...X
...ZX.X...
...Z..X..X

SampleOutput

1
1
-1


題意就是給你一個迷宮,不對,就是說你如今被困在迷宮裏,要去和你GF見面,可是迷宮中還有人不能夠走的牆和會殺死人的幽靈,幽靈每一個單位時間都會往上下左右延申新的幽靈。
幽靈有兩個,M是你的位置,G是GF的位置。
幽靈每秒能夠延申兩格,你能夠每秒走三步,GF每秒只能走一步,若是在不被殺死的狀況和女友匯合就輸出最小單位時間,不然輸出-1.
(注意幽靈是能夠往牆上延申的)
由於兩我的均可以動,不用說,雙向BFS是確定的,不過有一點就是,如何實現每秒走三步以及判斷是否被殺死呢?
答案是我也不知道。這道題目就留給各位本身思考。
=7=嘻嘻 不鬧了。其實能夠換個思路去思考,咱們能夠用三個bfs代替走三步,可是如何判斷是否被殺死呢,其實這道題能夠不須要判斷是否被殺死,而是判斷人物走到可否在幽靈延申到某個位置以前走到那個位置,用曼哈頓距離判斷就好了。

提一下什麼是曼哈頓距離

經常使用距離度量方法有十一種,而咱們大部分時間只用到歐氏距離和曼哈頓距離。
設兩個點的座標(X1,Y1),(X2,Y2);
歐氏距離就是座標的直線距離 = sqrt((X2 - X1)2+(Y2 - Y1)2)
而曼哈頓距離就是以歐式距離爲斜邊構造直角三角形的兩直角邊和 = |X2 - X1| + |Y2 - Y1|
爲何有這麼多構造方式以及其區別,這篇博文就不詳細介紹了。

值得一題的是,由於是雙向搜索,因此須要開兩個二維數組或是一個三維數組分別標記你或者GF是否走過。
還有就是代碼BFS中的
1 int len = q[w].size();
2 while(len--)
 
  

由於咱們不是一次就搜索完,咱們的BFS僅僅只是作走一步的做用,因此只把當前已經存的點的下一點存入就好了。如果以爲難以理解能夠替換成while(!q[w].empty)觀察每一步的輸出狀況。ios


代碼:
  1 #include <iostream>
  2 #include <string>
  3 #include <cstdio>
  4 #include <cstdlib>
  5 #include <sstream>
  6 #include <iomanip>
  7 #include <map>
  8 #include <stack>
  9 #include <deque>
 10 #include <queue>
 11 #include <vector>
 12 #include <set>
 13 #include <list>
 14 #include <cstring>
 15 #include <cctype>
 16 #include <algorithm>
 17 #include <iterator>
 18 #include <cmath>
 19 #include <bitset>
 20 #include <ctime>
 21 #include <fstream>
 22 #include <limits.h>
 23 #include <numeric>
 24 
 25 using namespace std;
 26 
 27 #define F first
 28 #define S second
 29 #define mian main
 30 #define ture true
 31 
 32 #define MAXN 1000000+5
 33 #define MOD 1000000007
 34 #define PI (acos(-1.0))
 35 #define EPS 1e-6
 36 #define MMT(s) memset(s, 0, sizeof s)
 37 typedef unsigned long long ull;
 38 typedef long long ll;
 39 typedef double db;
 40 typedef long double ldb;
 41 typedef stringstream sstm;
 42 const int INF = 0x3f3f3f3f;
 43 
 44 int fx[4][2]={1,0,-1,0,0,1,0,-1};
 45 char mp[810][810];
 46 int vis[2][810][810];
 47 int gx,gy,mx,my,n,m,step;  //記錄座標,這裏的step指的是GF走的步數,應該理解成走了多少單位時間
 48 pair<int,int>cur,z[2];  //z用來記錄幽靈位置
 49 queue<pair<int,int> >q[2];    //分別記錄你和GF的路徑
 50 
 51 bool check(pair<int,int> x){
 52     if(x.F < 0 || x.S < 0 || x.F >= n || x.S >= m || mp[x.F][x.S] == 'X')
 53         return false;
 54     if((abs(x.F-z[0].F)+abs(x.S-z[0].S)) <= 2*step || (abs(x.F-z[1].F)+abs(x.S-z[1].S)) <= 2*step)    //判斷在幽靈延申到某個點以前是否能走到
 55         return false;
 56     return true;
 57 }
 58 
 59 int bfs(int w){
 60     pair<int,int>tp,next;
 61     int len = q[w].size();
 62     while(len--){  //注意這裏不是搜完,由於是屢次搜索,只須要把當前步驟行進完就好了
 63         tp = q[w].front();
 64         q[w].pop();
 65         if(!check(tp)) continue;
 66         for(int i = 0; i < 4; i++){
 67             next.F = tp.F + fx[i][0];
 68             next.S = tp.S + fx[i][1];
 69             if(!check(next))
 70                 continue;
 71             if(!vis[w][next.F][next.S]){
 72                 if(vis[1-w][next.F][next.S])    //判斷下一個點是否對方已經走過
 73                     return 1;
 74                 vis[w][next.F][next.S] = 1;
 75                 q[w].push(next);
 76             }
 77         }
 78     }
 79     return 0;
 80 }
 81 
 82 int solve(){
 83     while(!q[0].empty())
 84         q[0].pop();
 85     while(!q[1].empty())
 86         q[1].pop();
 87 
 88     cur.F = mx;
 89     cur.S = my;
 90     q[0].push(cur);
 91     cur.F = gx;
 92     cur.S = gy;
 93     q[1].push(cur);
 94     MMT(vis);
 95     vis[0][mx][my] = vis[1][gx][gy] = 1;
 96     step = 0;
 97 
 98     while((!q[0].empty()) || (!q[1].empty())){
 99         step++;
100         if(bfs(0))    //經過三次bfs達到走三步
101             return step;
102         if(bfs(0))
103             return step;
104         if(bfs(0))
105             return step;
106         if(bfs(1))
107             return step;
108     }
109     return -1;
110 }
111 
112 int main(){
113     ios_base::sync_with_stdio(false);
114     cout.tie(0);
115     cin.tie(0);
116     int t;
117     cin>>t;
118     while(t--){
119         int cnt = 0;
120         cin>>n>>m;
121         for(int i = 0; i < n; i++)
122             cin>>mp[i];
123         for(int i = 0; i < n; i++)
124             for(int j = 0; j < m; j++){
125                 if(mp[i][j] == 'G')
126                     gx = i, gy = j;
127                 if(mp[i][j] == 'M')
128                     mx = i, my = j;
129                 if(mp[i][j] == 'Z')
130                     z[cnt].F = i, z[cnt++].S = j;
131             }
132         cout << solve() << endl;
133     }
134     return 0;
135 }
相關文章
相關標籤/搜索