Combination Sumhtml
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.數組
The same repeated number may be chosen from C unlimited number of times.測試
Note:code
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
htm
簡單的回溯法(遞歸實現).blog
好比對於數組3,2,6,7,target = 7,對數組排序獲得[2,3,6,7]排序
一、第1個數字選取2, 那麼接下來就是解決從數組[2,3,6,7]選擇數字且target = 7-2 = 5遞歸
二、第2個數字選擇2,那麼接下來就是解決從數組[2,3,6,7]選擇數字且target = 5-2 = 3ip
三、第3個數字選擇2,那麼接下來就是解決從數組[2,3,6,7]選擇數字且target = 3-2 = 1leetcode
四、此時target = 1小於數組中的全部數字,失敗,回溯,從新選擇第3個數字
五、第3個數字選擇3,那麼接下來就是解決從數組[2,3,6,7]選擇數字且target = 3-3 = 0
六、target = 0,找到了一組解,繼續回溯尋找其餘解
須要注意的是:若是數組中包含重複元素,咱們要忽略(由於每一個數字能夠選擇屢次,若是不忽略的話,就會產生重複的結果)。貌似oj的測試集數組中都不包含重複的數字
class Solution { private: vector<vector<int> > res; public: vector<vector<int> > combinationSum(vector<int> &candidates, int target) { sort(candidates.begin(), candidates.end());//爲了輸出結果遞增,所以先對數組排序 vector<int> tmpres; helper(candidates, 0, target, tmpres); return res; } //從數組candidates[index,...]尋找和爲target的組合 void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres) { if(target == 0) { res.push_back(tmpres); return; } for(int i = index; i < candidates.size() && target >= candidates[i]; i++) if(i == 0 || candidates[i] != candidates[i-1])//因爲每一個數能夠選取屢次,所以數組中重複的數就不用考慮 { tmpres.push_back(candidates[i]); helper(candidates, i, target - candidates[i], tmpres); tmpres.pop_back(); } } };
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
和上一題差很少,只是每一個元素只能選一次。
因爲有重複元素的存在,好比數組爲[1(1),1(2),2,3],target = 6. 可能出現重複結果1(1),2,3 和 1(2),2,3 本文地址
咱們能夠以下處理:若是數組中當前的數字出現重複,在前面重複了k次,且臨時結果數組中也包含了k個當前數字,那麼當前的數字能夠選擇;不然就不選擇當前數字
class Solution { private: vector<vector<int> >res; public: vector<vector<int> > combinationSum2(vector<int> &candidates, int target) { sort(candidates.begin(), candidates.end()); vector<int> tmpres; helper(candidates, 0, target, tmpres, 0); return res; } //從數組candidates[index,...]尋找和爲target的組合,times爲前一個數字candidates[index-1]重複出現的次數 void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres, int times) { if(target == 0) { res.push_back(tmpres); return; } for(int i = index; i < candidates.size() && target >= candidates[i]; i++) { if(i > 0 && candidates[i] == candidates[i-1])times++; else times = 1; if(times == 1 || (tmpres.size() >= times-1 && tmpres[tmpres.size()-times+1] == candidates[i])) { tmpres.push_back(candidates[i]); helper(candidates, i+1, target - candidates[i], tmpres, times); tmpres.pop_back(); } } } };
還有一種方法是,在每一個子問題的數組中,重複的數字都不選擇,這種更簡潔
class Solution { private: vector<vector<int> >res; public: vector<vector<int> > combinationSum2(vector<int> &candidates, int target) { sort(candidates.begin(), candidates.end()); vector<int> tmpres; helper(candidates, 0, target, tmpres); return res; } //從數組candidates[index,...]尋找和爲target的組合 void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres) { if(target == 0) { res.push_back(tmpres); return; } for(int i = index; i < candidates.size() && target >= candidates[i]; i++) { if(i > index && candidates[i] == candidates[i-1])continue;//當前子問題中,重複數字都不選擇 tmpres.push_back(candidates[i]); helper(candidates, i+1, target - candidates[i], tmpres); tmpres.pop_back(); } } };
【版權聲明】轉載請註明出處:http://www.cnblogs.com/TenosDoIt/p/3802647.html