好程序員大數據學習路線之Logstach與flume對比

好程序員大數據學習路線之Logstach與flume對比,沒有集羣的概念,logstach與flume都稱爲組
logstash是用JRuby語言開發的
組件的對比:
  logstach : input filter output
  flume : source channel sink
優劣對比:
logstach :
安裝簡單,安裝體積小
有filter組件,使得該工具具備數據過濾,數據切分的功能
能夠與ES無縫結合
具備數據容錯功能,在數據採集的時候,若是發生宕機或斷開的狀況,會斷點續傳(會記錄讀取的偏移量)
  綜上,該工具主要用途爲採集日誌數據
flume:
高可用方面要比logstach強大
flume一直在強調數據的安全性,flume在數據傳輸過程當中是由事務控制的
flume能夠應用在多類型數據傳輸領域
數據對接
將logstach.gz文件上傳解壓便可
能夠在logstach目錄下建立conf文件,用來存儲配置文件
一 命令啓動
1.bin/logstash -e 'input { stdin {} } output { stdout{} }'
  stdin/stdout(標準輸入輸出流)
hello xixi
2018-09-12T21:58:58.649Z hadoop01 hello xixi
hello haha
2018-09-12T21:59:19.487Z hadoop01 hello haha
2.bin/logstash -e 'input { stdin {} } output { stdout{codec => rubydebug} }'
hello xixi
{node

"message" => "hello xixi",
  "@version" => "1",
"@timestamp" => "2018-09-12T22:00:49.612Z",
      "host" => "hadoop01"

}
3.es集羣中 ,須要啓動es集羣
  bin/logstash -e 'input { stdin {} } output { elasticsearch {hosts => ["192.168.88.81:9200"]} stdout{} }'
輸入命令後,es自動生成index,自動mapping.
hello haha
2018-09-12T22:13:05.361Z hadoop01 hehello haha
  bin/logstash -e 'input { stdin {} } output { elasticsearch {hosts => ["192.168.88.81:9200", "192.168.88.82:9200"]} stdout{} }'
4.kafka集羣中,啓動kafka集羣
  bin/logstash -e 'input { stdin {} } output { elasticsearch {hosts => ["192.168.88.81:9200", "192.168.88.82:9200"]} stdout{} }'
二 配置文件啓動
須要啓動zookeeper集羣,kafka集羣,es集羣
1.與kafka數據對接
vi logstash-kafka.conf
  啓動
  bin/logstash -f logstash-kafka.conf (-f:指定文件)
  在另外一節點上啓動kafka消費命令
input {
file {程序員

path => "/root/data/test.log"
discover_interval => 5
start_position => "beginning"

}
}json

output {bootstrap

kafka {
  topic_id => "test1"
  codec => plain {
    format => "%{message}"
    charset => "UTF-8"
  }
  bootstrap_servers => "node01:9092,node02:9092,node03:9092"
}

}
2.與kafka-es數據對接
vi logstash-es.conf安全

啓動logstash

bin/logstash -f logstash-es.conf
  在另外一節點上啓動kafka消費命令
input {ruby

file {
    type => "gamelog"
    path => "/log/*/*.log"
    discover_interval => 10
    start_position => "beginning" 
}

}app

output {elasticsearch

elasticsearch {
    index => "gamelog-%{+YYYY.MM.dd}"
    hosts => ["node01:9200", "node02:9200", "node03:9200"]
}

}
數據對接過程
logstach節點存放: 哪一個節點空閒資源多放入哪一個節點 (靈活存放)
圖片描述工具

1.啓動logstach監控logserver目錄,把數據採集到kafka
2.啓動另一個logstach,監控kafka某個topic數據,把他採集到elasticsearch
數據對接案例
須要啓動兩個logstach,調用各個配置文件,進行對接
1.採集數據到kafka
  cd conf
  建立配置文件: vi gs-kafka.conf
input {
file {oop

codec => plain {
  charset => "GB2312"
}
path => "/root/basedir/*/*.txt"
discover_interval => 5
start_position => "beginning"

}
}

output {

kafka {
  topic_id => "gamelogs"
  codec => plain {
    format => "%{message}"
    charset => "GB2312"
  }
  bootstrap_servers => "node01:9092,node02:9092,node03:9092"
}

}
  建立kafka對應的topic
bin/kafka-topics.sh --create --zookeeper hadoop01:2181 --replication-factor 1 --partitions 1 --topic gamelogs
2.在hadoop01上啓動logstach
  bin/logstash -f conf/gs-kafka.conf
3.在hadoop02上啓動另一個logstach
  cd logstach/conf
  vi kafka-es.conf
input {
kafka {

type => "accesslogs"
codec => "plain"
auto_offset_reset => "smallest"
group_id => "elas1"
topic_id => "accesslogs"
zk_connect => "node01:2181,node02:2181,node03:2181"

}

kafka {

type => "gamelogs"
auto_offset_reset => "smallest"
codec => "plain"
group_id => "elas2"
topic_id => "gamelogs"
zk_connect => "node01:2181,node02:2181,node03:2181"

}
}

filter {
if [type] == "accesslogs" {

json {
  source => "message"
  remove_field => [ "message" ]
  target => "access"
}

}

if [type] == "gamelogs" {

mutate {
  split => { "message" => "    " }
  add_field => {
    "event_type" => "%{message[3]}"
    "current_map" => "%{message[4]}"
    "current_X" => "%{message[5]}"
    "current_y" => "%{message[6]}"
    "user" => "%{message[7]}"
    "item" => "%{message[8]}"
    "item_id" => "%{message[9]}"
    "current_time" => "%{message[12]}"
 }
 remove_field => [ "message" ]

}
}
}

output {

if [type] == "accesslogs" {

elasticsearch {
  index => "accesslogs"
  codec => "json"
  hosts => ["node01:9200", "node02:9200", "node03:9200"]
}

}

if [type] == "gamelogs" {

elasticsearch {
  index => "gamelogs1"
  codec => plain {
    charset => "UTF-16BE"
  }
  hosts => ["node01:9200", "node02:9200", "node03:9200"]
}

}
}
   bin/logstash -f conf/kafka-es.conf
4.修改basedir文件中任意數據便可產生es的index文件
圖片描述

5.網頁數據存儲在設置的/data/esdata中
6.在網頁中查找指定字段
  默認分詞器爲term,只能查找單個漢字,query_string能夠查找全漢字
圖片描述

相關文章
相關標籤/搜索