Sudoku is a placement puzzle. The goal is to enter a symbol in each cell of a grid, most frequently a 9 x 9 grid made up of 3 x 3subgrids. Each row, column and subgrid must contain only one instance of each symbol. Sudoku initially became popular in Japan in 1986 and attained international popularity in 2005. ios
The word Sudoku means ``single number" in Japanese. The symbols in Sudoku puzzles are often numerals, but arithmetic relationships between numerals are irrelevant. c++
According to wikipedia: 算法
The number of valid Sudoku solution grids for the standard 9 x 9 grid was calculated by Bertram Felgenhauer in 2005 to be 6,670,903,752,021,072,936,960, which is roughly the number of micrometers to the nearest star. This number is equal to 9! * 722 * 2
7 * 27, 704, 267, 971 , the last factor of which is prime. The result was derived through logic and brute force computation. The number of valid Sudoku solution grids for the 16 x 16 derivation is not known.
Write a program to find a solution to a 9 x 9 Sudoku puzzle given a starting configuration. 數組
The first line will contain an integer specifying the number of puzzles to be solved. The remaining lines will specify the starting configuration for each of the puzzles. Each line in a starting configuration will have nine characters selected from the numerals 1-9 and the underscore which indicates an empty cell. less
For each puzzle, the output should specify the puzzle number (starting at one) and describe the solution characteristics. If there is a single solution, it should be printed. Otherwise, a message indicating whether there are no solutions or multiple solutions should be printed. The output should be similar to that shown below. All input cases have less than 10,000 solutions. 優化
3 ________4 1____9_7_ __37_28__ ____7_26_ 4_______8 _91_6____ __42_36__ _3_14___9 9________ 7_9__2___ 3_____891 ___39___4 48__6____ __5___6__ ____4__23 2___57___ 568_____7 ___8__4_2 82_______ ___5__2__ __6_4_7__ _5___1_7_ 9_2_5_4_1 _3_8_6_9_ __3_6_1__ __5__2___ _______34
Puzzle 1 has 6 solutions Puzzle 2 solution is 719482365 324675891 856391274 482563719 135729648 697148523 243957186 568214937 971836452 Puzzle 3 has no solution
本題較爲複雜,雖然可以看出明顯應該用深度搜索方法,可是即便時間限制有10s使用暴力算法仍然會超時,須要必定的優化和剪枝。按照作數獨的通常思路,先對數獨空格進行可能性分析將全部格子的可能答案數作記錄(已有的記爲1),而後每次搜索以前先進行篩選,從前向後找答案數最少的進行深搜,一旦搜完再整理結果。剪枝的方案是,搜索時遇到有格子沒法填入數字(即答案數爲0)就返回0值。同時,注意由於深搜是反覆進行的,輸入數組會被反覆還原,可能的答案要另行保存不能使用原有輸入的數組。本題能很好的考察搜索的特色,值得反覆研究,並且數獨也是頗有趣的數學謎題。 spa
PS:注意輸出數據的格式調整。 rest
// Problem#: 1317 // Submission#: 1877449 // The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License // URI: http://creativecommons.org/licenses/by-nc-sa/3.0/ // All Copyright reserved by Informatic Lab of Sun Yat-sen University #include <iostream> #include <cstring> #include <fstream> using namespace std; int sudoku[9][9],recnt,ans[9][9],p[82]; bool isvalid[9][9][10],flag; int dfs(){ int n = 81; int x,y; for( int i=0 ; i<81 ; i++ ){ x = i/9; y = i%9; if( sudoku[x][y] ) continue; if( !p[i] ) return 0; if( p[i]>0 && p[i]<p[n] ) n = i; } if(n==81){ if( flag ){ flag = false; memcpy(ans,sudoku,sizeof(ans)); } return 1; } x = n/9; y = n%9; int trow[81],tcol[81],c; int re = 0; for( int t=1 ; t<10 ; t++ ){ if( isvalid[x][y][t] ){ int tp[82]; memcpy(tp,p,sizeof(tp)); sudoku[x][y] = t; c = 0; p[n] = 0; for( int k=0 ; k<9 ; k++ ){ if( isvalid[k][y][t] ){ isvalid[k][y][t] = false; trow[c] = k; tcol[c++] = y; p[k*9+y]--; } if( isvalid[x][k][t] ){ isvalid[x][k][t] = false; trow[c] = x; tcol[c++] = k; p[x*9+k]--; } } for( int r=x/3*3 ; r < (x/3+1)*3 ; r++ ) for( int s=y/3*3 ; s < (y/3+1)*3 ; s++ ) if( isvalid[r][s][t] ){ isvalid[r][s][t] = false; trow[c] = r; tcol[c++] = s; p[r*9+s]--; } re += dfs(); for( int i=0 ; i<c ; i++ ) isvalid[trow[i]][tcol[i]][t] = true; memcpy(p,tp,sizeof(p)); sudoku[x][y] = 0; } } return re; } int main(){ int n; char c; cin >> n; for(int count=1 ; count <= n ; count++){ recnt = 0; flag = true; memset(sudoku,0,sizeof(sudoku)); memset(isvalid,true,sizeof(isvalid)); memset(p,0,sizeof(p)); p[81] = 1000; for( int i=0 ; i<9 ; i++ ){ for( int j=0 ; j<9 ; j++ ){ cin >> c; if( c!='_' ){ sudoku[i][j] = c - '0'; int t = sudoku[i][j]; for( int k=0 ; k<9 ; k++ ){ isvalid[k][j][t] = k==i; isvalid[i][k][t] = k==j; isvalid[i][j][k+1] = k+1==t; } for( int r=i/3*3 ; r < (i/3+1)*3 ; r++ ) for( int s=j/3*3 ; s < (j/3+1)*3 ; s++ ) if( r!=i&&s!=j ) isvalid[r][s][t] = false; } } } for( int i=0 ; i<9 ; i++ ) for( int j=0 ; j<9 ; j++ ) for( int k=1 ; k<10 ; k++ ) if( isvalid[i][j][k] ) p[i*9+j]++; recnt += dfs(); cout << "Puzzle " << count; if(recnt){ if( recnt>1 ) cout << " has " << recnt << " solutions" << endl; else{ cout << " solution is" << endl; for( int i=0 ; i<9 ; i++ ){ for( int j=0 ; j<9 ; j++ ) cout << ans[i][j]; cout << endl; } } }else{ cout << " has no solution" << endl; } if( count<n ) cout << endl; } return 0; }