springboot實踐筆記之一:springboot+sharding-jdbc+mybatis全註解實現增量數據庫分片實現

因爲噹噹發佈了最新的Sharding-Sphere,因此本文已通過時,不日將推出新的版本java

項目中遇到了分庫分表的問題,找到了shrding-jdbc,因而就搞了一個springboot+sharding-jdbc+mybatis的增量分片的應用。今天寫博客總結一下遇到的坑。

其實,我本身寫了一個increament-jdbc組件的,當我讀了sharding-jdbc的源碼以後,發現思路和原理差很少,sharding這個各方面要比個人強,畢竟我是一天以內趕出來的東東。mysql

示例代碼地址:https://gitee.com/spartajet/s...git

demo沒有寫日誌,也沒有各類異常判斷,只是說明問題web

1、需求背景

個人項目背景就不說了,如今舉一個例子吧:A,B兩支股票都在上海,深圳上市,須要實時記錄這兩支股票的交易tick(不懂tick也沒有關係)。如今的分片策略是:上海、深圳分別建庫,每一個庫都存各自交易所的兩支股票的ticktick,且按照月分表。如圖:算法

  • db_shspring

    • tick_a_2017_01
    • tick_b_2017_01
    • ........
    • tick_a_2017_12
    • tick_b_2017_12
  • db_szsql

    • tick_a_2017_01數據庫

      • tick_b_2017_01
      • ........
      • tick_a_2017_12
      • tick_b_2017_12
分庫分表就是這樣的。根據這個建庫。

**千萬不要討論這樣分庫分表是否合適,這裏這樣分片只是舉個栗子,說明分庫分表這個事情。**

**Sharding-jdbc是不支持建庫的SQL,若是像我這樣增量的數據庫和數據表,那就要一次性把一段時期的數據庫和數據表都要建好。**

2、建庫

考慮到表確實多,因此我就只建1,2月份的表。語句見demo文件。apache

3、springboot集成sharding-jdbc

mvn配置pom以下:json

<groupId>com.spartajet</groupId>
    <artifactId>springboot-sharding-jdbc-demo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>springboot-sharding-jdbc-demo</name>
    <description>Springboot integrate Sharding-jdbc Demo</description>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.build.locales>zh_CN</project.build.locales>
        <java.version>1.8</java.version>
        <project.build.jdk>${java.version}</project.build.jdk>
        <spring.boot.version>1.4.1.RELEASE</spring.boot.version>
        <com.alibaba.druid.version>1.0.13</com.alibaba.druid.version>
        <mysql-connector-java.version>5.1.36</mysql-connector-java.version>
        <sharding-jdbc.version>1.4.1</sharding-jdbc.version>
        <com.google.code.gson.version>2.8.0</com.google.code.gson.version>
        <joda-trade.version>2.9.7</joda-trade.version>
        <commons-dbcp.version>1.4</commons-dbcp.version>
        <commons-io.version>2.5</commons-io.version>
        <mybatis-spring-boot-starter.version>1.2.0</mybatis-spring-boot-starter.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jdbc</artifactId>
            <version>${spring.boot.version}</version>
        </dependency>
        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>${mybatis-spring-boot-starter.version}</version>
        </dependency>
        <dependency>
            <groupId>commons-dbcp</groupId>
            <artifactId>commons-dbcp</artifactId>
            <version>${commons-dbcp.version}</version>
        </dependency>
        <dependency>
            <groupId>com.dangdang</groupId>
            <artifactId>sharding-jdbc-core</artifactId>
            <version>${sharding-jdbc.version}</version>
        </dependency>
        <dependency>
            <groupId>com.dangdang</groupId>
            <artifactId>sharding-jdbc-config-spring</artifactId>
            <version>${sharding-jdbc.version}</version>
        </dependency>
        <dependency>
            <groupId>com.dangdang</groupId>
            <artifactId>sharding-jdbc-self-id-generator</artifactId>
            <version>${sharding-jdbc.version}</version>
        </dependency>
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>${com.google.code.gson.version}</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <version>${spring.boot.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>org.springframework.boot</artifactId>
                    <groupId>spring-boot-start-logging</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <version>${spring.boot.version}</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-log4j2</artifactId>
            <version>${spring.boot.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>log4j</groupId>
                    <artifactId>log4j</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
            <version>${spring.boot.version}</version>
            <exclusions>
                <exclusion>
                    <artifactId>org.springframework.boot</artifactId>
                    <groupId>spring-boot-start-logging</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>logback-classic</artifactId>
                    <groupId>ch.qos.logback</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>log4j-over-slf4j</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>${mysql-connector-java.version}</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <version>${spring.boot.version}</version>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>${project.build.jdk}</source>
                    <target>${project.build.jdk}</target>
                    <encoding>${project.build.sourceEncoding}</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-jar-plugin</artifactId>
                <version>2.4</version>
            </plugin>
        </plugins>
    </build>

其實這個和sharding-jdbc的官網差很少。其實我想寫一個sharding-jdbc-spring-boot-starter的pom的,等項目業務都作完再說吧。

4、配置數據源

我想將數據庫作成可配置的,因此我沒有在application.properties文件中直接配置數據庫,而是寫在了database.json文件中。

[
  {
    "name": "db_sh",
    "url": "jdbc:mysql://localhost:3306/db_sh",
    "username": "root",
    "password": "root",
    "driveClassName":"com.mysql.jdbc.Driver"
  },
  {
    "name": "db_sz",
    "url": "jdbc:mysql://localhost:3306/db_sz",
    "username": "root",
    "password": "root",
    "driveClassName":"com.mysql.jdbc.Driver"
  }
]

而後在springboot讀取database文件,加載方式以下:

@Value("classpath:database.json")
    private Resource databaseFile;

    @Bean
    public List<Database> databases() throws IOException {
        String databasesString = IOUtils.toString(databaseFile.getInputStream(), Charset.forName("UTF-8"));
        List<Database> databases = new Gson().fromJson(databasesString, new TypeToken<List<Database>>() {
        }.getType());
        return databases;
    }

加載完database信息以後,能夠經過工廠方法配置邏輯數據庫:

@Bean
    public HashMap<String, DataSource> dataSourceMap(List<Database> databases) {
        Map<String, DataSource> dataSourceMap = new HashMap<>();
        for (Database database : databases) {
            DataSourceBuilder dataSourceBuilder = DataSourceBuilder.create();
            dataSourceBuilder.url(database.getUrl());
            dataSourceBuilder.driverClassName(database.getDriveClassName());
            dataSourceBuilder.username(database.getUsername());
            dataSourceBuilder.password(database.getPassword());
            DataSource dataSource = dataSourceBuilder.build();
            dataSourceMap.put(database.getName(), dataSource);
        }
        return dataSourceMap;
    }

這樣就把各個邏輯數據庫就加載好了。

5、配置分片策略

5.1數據庫分片策略

在這個實例中,數據庫的分庫就是根據上海(sh)和深圳(sz)來分的,在sharding-jdbc中是單鍵分片。根據官方文檔實現接口SingleKeyDatabaseShardingAlgorithm就能夠

@service
public class DatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<String> {
    /**
     * 根據分片值和SQL的=運算符計算分片結果名稱集合.
     *
     * @param availableTargetNames 全部的可用目標名稱集合, 通常是數據源或表名稱
     * @param shardingValue        分片值
     *
     * @return 分片後指向的目標名稱, 通常是數據源或表名稱
     */
    @Override
    public String doEqualSharding(Collection<String> availableTargetNames, ShardingValue<String> shardingValue) {
        String databaseName = "";
        for (String targetName : availableTargetNames) {
            if (targetName.endsWith(shardingValue.getValue())) {
                databaseName = targetName;
                break;
            }
        }
        return databaseName;
    }
}

此接口還有另外兩個方法,doInShardingdoBetweenSharding,由於我暫時不用IN和BETWEEN方法,因此就沒有寫,直接返回null。

5.2數據表分片策略

數據表的分片策略是根據股票和時間共同決定的,在sharding-jdbc中是多鍵分片。根據官方文檔,實現MultipleKeysTableShardingAlgorithm接口就OK了

@service
public class TableShardingAlgorithm implements MultipleKeysTableShardingAlgorithm {
    /**
     * 根據分片值計算分片結果名稱集合.
     *
     * @param availableTargetNames 全部的可用目標名稱集合, 通常是數據源或表名稱
     * @param shardingValues       分片值集合
     *
     * @return 分片後指向的目標名稱集合, 通常是數據源或表名稱
     */
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, Collection<ShardingValue<?>> shardingValues) {
        String name = null;
        Date time = null;
        for (ShardingValue<?> shardingValue : shardingValues) {
            if (shardingValue.getColumnName().equals("name")) {
                name = ((ShardingValue<String>) shardingValue).getValue();
            }
            if (shardingValue.getColumnName().equals("time")) {
                time = ((ShardingValue<Date>) shardingValue).getValue();
            }
            if (name != null && time != null) {
                break;
            }
        }
        String timeString = new SimpleDateFormat("yyyy_MM").format(time);
        String suffix = name + "_" + timeString;
        Collection<String> result = new LinkedHashSet<>();
        for (String targetName : availableTargetNames) {
            if (targetName.endsWith(suffix)) {
                result.add(targetName);
            }
        }
        return result;
    }
}

這些方法的使用能夠查官方文檔。

5.3注入分片策略

以上只是定義了分片算法,尚未造成策略,尚未告訴shrding將哪一個字段給分片算法:

@Configuration
public class ShardingStrategyConfig {
    @Bean
    public DatabaseShardingStrategy databaseShardingStrategy(DatabaseShardingAlgorithm databaseShardingAlgorithm) {
        DatabaseShardingStrategy databaseShardingStrategy = new DatabaseShardingStrategy("exchange", databaseShardingAlgorithm);
        return databaseShardingStrategy;
    }

    @Bean
    public TableShardingStrategy tableShardingStrategy(TableShardingAlgorithm tableShardingAlgorithm) {
        Collection<String> columns = new LinkedList<>();
        columns.add("name");
        columns.add("time");
        TableShardingStrategy tableShardingStrategy = new TableShardingStrategy(columns, tableShardingAlgorithm);
        return tableShardingStrategy;
    }
}

這樣才能造成完成的分片策略。

6、配置Sharding-jdbc的DataSource

sharding-jdbc的原理其實很簡單,就是本身作一個DataSource給上層應用使用,這個DataSource包含全部的邏輯庫和邏輯表,應用增刪改查時,他本身再修改sql,而後選擇合適的數據庫繼續操做。因此這個DataSource建立很重要。

@Bean
    @Primary
    public DataSource shardingDataSource(HashMap<String, DataSource> dataSourceMap, DatabaseShardingStrategy databaseShardingStrategy, TableShardingStrategy tableShardingStrategy) {
        DataSourceRule dataSourceRule = new DataSourceRule(dataSourceMap);
        TableRule tableRule = TableRule.builder("tick").actualTables(Arrays.asList("db_sh.tick_a_2017_01", "db_sh.tick_a_2017_02", "db_sh.tick_b_2017_01", "db_sh.tick_b_2017_02", "db_sz.tick_a_2017_01", "db_sz.tick_a_2017_02", "db_sz.tick_b_2017_01", "db_sz.tick_a_2017_02")).dataSourceRule(dataSourceRule).build();
        ShardingRule shardingRule = ShardingRule.builder().dataSourceRule(dataSourceRule).tableRules(Arrays.asList(tableRule)).databaseShardingStrategy(databaseShardingStrategy).tableShardingStrategy(tableShardingStrategy).build();
        DataSource shardingDataSource = ShardingDataSourceFactory.createDataSource(shardingRule);
        return shardingDataSource;
    }

這裏要着重說一下爲何要用@Primary這個註解,沒有這個註解是會報錯的,錯誤大體意思就是DataSource太多了,mybatis不知道用哪一個。加上這個mybatis就知道用sharding的DataSource了。這裏參考的是jpa的多數據源配置

7、配置mybatis

7.1 Bean

public class Tick {
    private long id;
    private String name;
    private String exchange;
    private int ask;
    private int bid;
    private Date time;
}

7.2 Mapper

很簡單,只實現一個插入方法

@Mapper
public interface TickMapper {
    @Insert("insert into tick (id,name,exchange,ask,bid,time) values (#{id},#{name},#{exchange},#{ask},#{bid},#{time})")
    void insertTick(Tick tick);
}

7.3 SessionFactory配置

還要設置一下tick的SessionFactory:

@Configuration
@MapperScan(basePackages = "com.spartajet.shardingboot.mapper", sqlSessionFactoryRef = "sessionFactory")
public class TickSessionFactoryConfig {
    @Bean
    public SqlSessionFactory sessionFactory(DataSource shardingDataSource) throws Exception {
        final SqlSessionFactoryBean sessionFactory = new SqlSessionFactoryBean();
        sessionFactory.setDataSource(shardingDataSource);
        return sessionFactory.getObject();
    }

    @Bean
    public CommonSelfIdGenerator commonSelfIdGenerator() {
        CommonSelfIdGenerator.setClock(AbstractClock.systemClock());
        CommonSelfIdGenerator commonSelfIdGenerator = new CommonSelfIdGenerator();
        return commonSelfIdGenerator;
    }
}

這裏添加了一個CommonSelfIdGenerator,sharding自帶的id生成器,看了下代碼和facebooksnowflake相似。我又不想把數據庫的主鍵設置成自增的,不然數據雙向同步會死的很慘的。

8、測試寫入

@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest
public class SpringbootShardingJdbcDemoApplicationTests {
    @Autowired
    private TickMapper tickMapper;
    @Autowired
    private CommonSelfIdGenerator commonSelfIdGenerator;
    
    
    @Test
    public void contextLoads() {
        Tick tick = new Tick(commonSelfIdGenerator.generateId().longValue(), "a", "sh", 100, 200, new Date());
        this.tickMapper.insertTick(tick);
    }

}

成功實現增量分庫分表!!!

相關文章
相關標籤/搜索