spark2.4+elasticsearch6.1.1搭建一個推薦系統

本博文詳細記錄了IBM在網上公佈使用spark,elasticsearch搭建一個推薦系統的DEMO。demo中使用的elasticsearch版本號爲5.4,數據集是在推薦中常用movies data。Demo中提供計算向量類似度es5.4插件在es6.1.1中沒法使用,所以咱們基於es6.1.1開發一個新的計算特徵向量類似度的插件,插件具體詳情見github,下面咱們一步一步的實現這個推薦系統:git

總體框架

整個框架圖以下:
es6

從圖中咱們能夠看出具體的操做流程是:github

  1. 利用spark.read.csv()讀取ratings,users,movies數據集。
  2. 對數據集進行相關的處理
  3. 經過es-hadoop插件,將整理後的數據集保存到es
  4. 訓練一個推薦模型-協同過濾模型
  5. 把訓練好的模型保存到es中
  6. 搜索推薦-es查詢和一個自定義矢量評分插件,計算用戶與movies的最後評分

安裝相關的組件

elasticsearch安裝

spark安裝

下載es-hadoop中間件

安裝計算向量類似度的elasticsearch插件

運行

安裝完es,spark,下載es-hadoop插件,以及es安裝計算矢量評分的插件,而後經過以下命令啓動:框架

PYSPARK_DRIVER_PYTHON="jupyter" PYSPARK_DRIVER_PYTHON_OPTS="notebook" /home/whb/Documents/pc/spark/spark-2.4.0/bin/pyspark --driver-memory 4g --driver-class-path /home/whb/Documents/pc/ELK/elasticsearch-hadoop-6.1.1/dist/elasticsearch-spark-20_2.11-6.1.1.jar

結果展現

from IPython.display import Image, HTML, display

def get_poster_url(id):
    """Fetch movie poster image URL from TMDb API given a tmdbId"""
    IMAGE_URL = 'https://image.tmdb.org/t/p/w500'
    try:
        import tmdbsimple as tmdb
        from tmdbsimple import APIKeyError
        try:
            movie = tmdb.Movies(id).info()
            poster_url = IMAGE_URL + movie['poster_path'] if 'poster_path' in movie and movie['poster_path'] is not None else ""
            return poster_url
        except APIKeyError as ae:
            return "KEY_ERR"
    except Exception as me:
        return "NA"
    
    
def fn_query(query_vec, q="*", cosine=False):
    """
    Construct an Elasticsearch function score query.
    
    The query takes as parameters:
        - the field in the candidate document that contains the factor vector
        - the query vector
        - a flag indicating whether to use dot product or cosine similarity (normalized dot product) for scores
        
    The query vector passed in will be the user factor vector (if generating recommended movies for a user)
    or movie factor vector (if generating similar movies for a given movie)
    """
    return {
    "query": {
        "function_score": {
            "query" : { 
                "query_string": {
                    "query": q
                }
            },
            "script_score": {
                "script": {
                        "source": "whb_fvd",
                        "lang": "feature_vector_scoring_script",
                        "params": {
                            "field": "@model.factor",
                            "encoded_vector": query_vec,
                            "cosine" : True
                        }
                    }
            },
            "boost_mode": "replace"
        }
    }
}


def get_similar(the_id, q="*", num=10, index="movies", dt="movies"):
    """
    Given a movie id, execute the recommendation function score query to find similar movies, ranked by cosine similarity
    """
    response = es.get(index=index, doc_type=dt, id=the_id)
    src = response['_source']
    if '@model' in src and 'factor' in src['@model']:
        raw_vec = src['@model']['factor']
        # our script actually uses the list form for the query vector and handles conversion internally
        q = fn_query(raw_vec, q=q, cosine=True)
        results = es.search(index, dt, body=q)
        hits = results['hits']['hits']
        return src, hits[1:num+1]
    
    
def get_user_recs(the_id, q="*", num=10, index="users"):
    """
    Given a user id, execute the recommendation function score query to find top movies, ranked by predicted rating
    """
    response = es.get(index=index, doc_type="users", id=the_id)
    src = response['_source']
    if '@model' in src and 'factor' in src['@model']:
        raw_vec = src['@model']['factor']
        # our script actually uses the list form for the query vector and handles conversion internally
        q = fn_query(raw_vec, q=q, cosine=False)
        results = es.search(index, "movies", body=q)
        hits = results['hits']['hits']
        return src, hits[:num]

def get_movies_for_user(the_id, num=10, index="ratings"):
    """
    Given a user id, get the movies rated by that user, from highest- to lowest-rated.
    """
    response = es.search(index="ratings", doc_type="ratings", q="userId:%s" % the_id, size=num, sort=["rating:desc"])
    hits = response['hits']['hits']
    ids = [h['_source']['movieId'] for h in hits]
    movies = es.mget(body={"ids": ids}, index="movies", doc_type="movies", _source_include=['tmdbId', 'title'])
    movies_hits = movies['docs']
    tmdbids = [h['_source'] for h in movies_hits]
    return tmdbids

            
def display_user_recs(the_id, q="*", num=10, num_last=10, index="users"):
    user, recs = get_user_recs(the_id, q, num, index)
    user_movies = get_movies_for_user(the_id, num_last, index)
    # check that posters can be displayed
    first_movie = user_movies[0]
    first_im_url = get_poster_url(first_movie['tmdbId'])
    if first_im_url == "NA":
        display(HTML("<i>Cannot import tmdbsimple. No movie posters will be displayed!</i>"))
    if first_im_url == "KEY_ERR":
        display(HTML("<i>Key error accessing TMDb API. Check your API key. No movie posters will be displayed!</i>"))
        
    # display the movies that this user has rated highly
    display(HTML("<h2>Get recommended movies for user id %s</h2>" % the_id))
    display(HTML("<h4>The user has rated the following movies highly:</h4>"))
    user_html = "<table border=0>"
    i = 0
    for movie in user_movies:
        movie_im_url = get_poster_url(movie['tmdbId'])
        movie_title = movie['title']
        user_html += "<td><h5>%s</h5><img src=%s width=150></img></td>" % (movie_title, movie_im_url)
        i += 1
        if i % 5 == 0:
            user_html += "</tr><tr>"
    user_html += "</tr></table>"
    display(HTML(user_html))
    # now display the recommended movies for the user
    display(HTML("<br>"))
    display(HTML("<h2>Recommended movies:</h2>"))
    rec_html = "<table border=0>"
    i = 0
    for rec in recs:
        r_im_url = get_poster_url(rec['_source']['tmdbId'])
        r_score = rec['_score']
        r_title = rec['_source']['title']
        rec_html += "<td><h5>%s</h5><img src=%s width=150></img></td><td><h5>%2.3f</h5></td>" % (r_title, r_im_url, r_score)
        i += 1
        if i % 5 == 0:
            rec_html += "</tr><tr>"
    rec_html += "</tr></table>"
    display(HTML(rec_html))

    
def display_similar(the_id, q="*", num=10, index="movies", dt="movies"):
    """
    Display query movie, together with similar movies and similarity scores, in a table
    """
    movie, recs = get_similar(the_id, q, num, index, dt)
    q_im_url = get_poster_url(movie['tmdbId'])
    if q_im_url == "NA":
        display(HTML("<i>Cannot import tmdbsimple. No movie posters will be displayed!</i>"))
    if q_im_url == "KEY_ERR":
        display(HTML("<i>Key error accessing TMDb API. Check your API key. No movie posters will be displayed!</i>"))
        
    display(HTML("<h2>Get similar movies for:</h2>"))
    display(HTML("<h4>%s</h4>" % movie['title']))
    if q_im_url != "NA":
        display(Image(q_im_url, width=200))
    display(HTML("<br>"))
    display(HTML("<h2>People who liked this movie also liked these:</h2>"))
    sim_html = "<table border=0>"
    i = 0
    for rec in recs:
        r_im_url = get_poster_url(rec['_source']['tmdbId'])
        r_score = rec['_score']
        r_title = rec['_source']['title']
        sim_html += "<td><h5>%s</h5><img src=%s width=150></img></td><td><h5>%2.3f</h5></td>" % (r_title, r_im_url, r_score)
        i += 1
        if i % 5 == 0:
            sim_html += "</tr><tr>"
    sim_html += "</tr></table>"
    display(HTML(sim_html))

參考博客

https://github.com/IBM/elasticsearch-spark-recommenderelasticsearch

相關文章
相關標籤/搜索