TensorFlow Debugger(tfdbg),TensorFlow專用調試器。用斷點、計算機圖形化展示實時數據流,可視化運行TensorFlow圖形內部結構、狀態。有助訓練推理調試模型錯誤。https://www.tensorflow.org/pr... 。node
常見錯誤類型,非數字(nan)、無限值(inf)。tfdbg命令行界面(command line interface,CLI)。python
Debugger示例。錯誤運行MNIST訓練,經過TensorFlow Debugger找到出錯地方,改正。https://github.com/tensorflow... 。react
先直接執行。git
python -m tensorflow.python.debug.examples.debug_mnist
準確率第一次訓練上千,後面保持較低水平。
TensorFlow Debugger,在每次調用run()先後基於終端用戶界面(UI),控制執行、檢查圖內部狀態。github
from tensorflow.python import debug as tf_debug sess = tr.debug.LocalCLIDebugWrapperSession(sess) sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
張量值註冊過濾器has_inf_on_nan,判斷圖中間張量是否有nan、inf值。
開啓調試模式(debug)。微信
python -m tensorflow.python.debug.examples.debug_mnist -debug python debug_mnist.py --debug=True
運行開始UI(run-start UI),在tfdbg>後輸入交互式命令,run()進入運行結束後UI(run-end UI)。連續運行10次session
tfdbg>run -t 10
找出圖形第一個nan或inf值app
tfdbg> run -f has_inf_or_nan
第一行灰底字表示tfdbg在調用run()後當即中止,生成指定過濾器has_inf_or_nan中間張量。第4次調用run(),36箇中間張量包含inf或nan值。首次出如今cross_entropy/Log:0。單擊圖中cross_entropy/Log:0,單擊下劃線node_info菜單項,看節點輸入張量,是否有0值。機器學習
tfdbg>pt softmax/Softmax:0
用ni命令-t標誌追溯ide
ni -t cross_entropy/Log
問題代碼
diff = -(y_ * tf.log(y))
修改,對tf.log輸入值裁剪
diff = y_ * tf.log(tf.clip_by_value(y, 1e-8, 1.0)) from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python import debug as tf_debug IMAGE_SIZE = 28 HIDDEN_SIZE = 500 NUM_LABELS = 10 RAND_SEED = 42 def main(_): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) def feed_dict(train): if train or FLAGS.fake_data: xs, ys = mnist.train.next_batch(FLAGS.train_batch_size, fake_data=FLAGS.fake_data) else: xs, ys = mnist.test.images, mnist.test.labels return {x: xs, y_: ys} sess = tf.InteractiveSession() # Create the MNIST neural network graph. # Input placeholders. with tf.name_scope("input"): x = tf.placeholder( tf.float32, [None, IMAGE_SIZE * IMAGE_SIZE], name="x-input") y_ = tf.placeholder(tf.float32, [None, NUM_LABELS], name="y-input") def weight_variable(shape): """Create a weight variable with appropriate initialization.""" initial = tf.truncated_normal(shape, stddev=0.1, seed=RAND_SEED) return tf.Variable(initial) def bias_variable(shape): """Create a bias variable with appropriate initialization.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): """Reusable code for making a simple neural net layer.""" # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope("weights"): weights = weight_variable([input_dim, output_dim]) with tf.name_scope("biases"): biases = bias_variable([output_dim]) with tf.name_scope("Wx_plus_b"): preactivate = tf.matmul(input_tensor, weights) + biases activations = act(preactivate) return activations hidden = nn_layer(x, IMAGE_SIZE**2, HIDDEN_SIZE, "hidden") logits = nn_layer(hidden, HIDDEN_SIZE, NUM_LABELS, "output", tf.identity) y = tf.nn.softmax(logits) with tf.name_scope("cross_entropy"): # The following line is the culprit of the bad numerical values that appear # during training of this graph. Log of zero gives inf, which is first seen # in the intermediate tensor "cross_entropy/Log:0" during the 4th run() # call. A multiplication of the inf values with zeros leads to nans, # which is first in "cross_entropy/mul:0". # # You can use the built-in, numerically-stable implementation to fix this # issue: # diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=logits) diff = -(y_ * tf.log(y)) with tf.name_scope("total"): cross_entropy = tf.reduce_mean(diff) with tf.name_scope("train"): train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( cross_entropy) with tf.name_scope("accuracy"): with tf.name_scope("correct_prediction"): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope("accuracy"): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess.run(tf.global_variables_initializer()) if FLAGS.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess, ui_type=FLAGS.ui_type) # Add this point, sess is a debug wrapper around the actual Session if # FLAGS.debug is true. In that case, calling run() will launch the CLI. for i in range(FLAGS.max_steps): acc = sess.run(accuracy, feed_dict=feed_dict(False)) print("Accuracy at step %d: %s" % (i, acc)) sess.run(train_step, feed_dict=feed_dict(True)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--max_steps", type=int, default=10, help="Number of steps to run trainer.") parser.add_argument( "--train_batch_size", type=int, default=100, help="Batch size used during training.") parser.add_argument( "--learning_rate", type=float, default=0.025, help="Initial learning rate.") parser.add_argument( "--data_dir", type=str, default="/tmp/mnist_data", help="Directory for storing data") parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--fake_data", type="bool", nargs="?", const=True, default=False, help="Use fake MNIST data for unit testing") parser.add_argument( "--debug", type="bool", nargs="?", const=True, default=False, help="Use debugger to track down bad values during training") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
遠程調試。tfdbg offline_analyzer。設置本地、遠程機器能訪問共享目錄。debug_utils.watch_graph函數設置運行時參數選項。運行session.run(),中間張量、運行時圖像轉儲到共享目錄。本地終端用tfdbg offline_analyzer加載、檢查共享目錄數據。
python -m tensorflow.python.debug.cli.offline_analyzer --dump_dir=/home/somebody/tfdbg_dumps_1
源碼
from tensorflow.python.debug.lib import debug_utils # 構建圖,生成session對象,省略 run_options = tf.RunOptions() debug_utils.watch_graph( run_options, sess.graph, # 共享目錄位置 # 多個客戶端執行run,應用多個不一樣共享目錄 debug_urls=["file://home/somebody/tfdbg_dumps_1"]) session.run(fetches, feed_dict=feeds, options=run_options)
或用會話包裝器函數DumpingDebugWrapperSession在共享目錄產生訓練累積文件。
from tensorflow.python.debug.lib import debug_utils sess = tf_debug.DumpingDebugWrapperSession(sess, "/home/somebody/tfdbg_dumps_1", watch_fn=my_watch_fn)
參考資料:
《TensorFlow技術解析與實戰》
歡迎推薦上海機器學習工做機會,個人微信:qingxingfengzi