最近想將java基礎的一些東西都整理整理,寫下來,這是對知識的總結,也是一種樂趣。已經擬好了提綱,大概分爲這幾個主題: java線程安全,java垃圾收集,java併發包詳細介紹,java profile和jvm性能調優 。慢慢寫吧。本人jameswxx原創文章,轉載請註明出處,我費了不少心血,多謝了。關於java線 程安全,網上有不少資料,我只想從本身的角度總結對這方面的考慮,有時候寫東西是很痛苦的,知道一些東西,但想用文字說清楚,卻不是那麼容易。我認爲要認 識java線程安全,必須瞭解兩個主要的點:java的內存模型,java的線程同步機制。特別是內存模型,java的線程同步機制很大程度上都是基於內 存模型而設定的。後面我還會寫java併發包的文章,詳細總結如何利用java併發包編寫高效安全的多線程併發程序。暫時寫得比較倉促,後面會慢慢補充完 善。html
淺談java內存模型
不一樣的平臺,內存模型是不同的,可是jvm的內存模型規範是統一的。其實java的多線程併發問題最終都會反映在java的內存模型上,所謂線程安全無 非是要控制多個線程對某個資源的有序訪問或修改。總結java的內存模型,要解決兩個主要的問題:可見性和有序性。咱們都知道計算機有高速緩存的存在,處 理器並非每次處理數據都是取內存的。JVM定義了本身的內存模型,屏蔽了底層平臺內存管理細節,對於java開發人員,要清楚在jvm內存模型的基礎 上,若是解決多線程的可見性和有序性。
那麼,何謂可見性? 多個線程之間是不能互相傳遞數據通訊的,它們之間的溝通只能經過共享變量來進行。Java內存模型(JMM)規定了jvm有主內存,主內存是多個線程共享 的。當new一個對象的時候,也是被分配在主內存中,每一個線程都有本身的工做內存,工做內存存儲了主存的某些對象的副本,固然線程的工做內存大小是有限制 的。當線程操做某個對象時,執行順序以下:
(1) 從主存複製變量到當前工做內存 (read and load)
(2) 執行代碼,改變共享變量值 (use and assign)
(3) 用工做內存數據刷新主存相關內容 (store and write) java
JVM規範定義了線程對主存的操做指 令:read,load,use,assign,store,write。當一個共享變量在多個線程的工做內存中都有副本時,若是一個線程修改了這個共享 變量,那麼其餘線程應該可以看到這個被修改後的值,這就是多線程的可見性問題。
那麼,什麼是有序性呢 ?線程在引用變量時不能直接從主內存中引用,若是線程工做內存中沒有該變量,則會從主內存中拷貝一個副本到工做內存中,這個過程爲read-load,完 成後線程會引用該副本。當同一線程再度引用該字段時,有可能從新從主存中獲取變量副本(read-load-use),也有可能直接引用原來的副本 (use),也就是說 read,load,use順序能夠由JVM實現系統決定。
線程不能直接爲主存中中字段賦值,它會將值指定給工做內存中的變量副本(assign),完成後這個變量副本會同步到主存儲區(store- write),至於什麼時候同步過去,根據JVM實現系統決定.有該字段,則會從主內存中將該字段賦值到工做內存中,這個過程爲read-load,完成後線 程會引用該變量副本,當同一線程屢次重複對字段賦值時,好比: 緩存
for(int i=0;i<10;i++) 多線程
a++; 併發
for(int i=0;i<10;i++) a++;
線程有可能只對工做內存中的副本進行賦值,只到最後一次賦值後才同步到主存儲區,因此assign,store,weite順序能夠由JVM實現系統決 定。假設有一個共享變量x,線程a執行x=x+1。從上面的描述中能夠知道x=x+1並非一個原子操做,它的執行過程以下:
1 從主存中讀取變量x副本到工做內存
2 給x加1
3 將x加1後的值寫回主 存
若是另一個線程b執行x=x-1,執行過程以下:
1 從主存中讀取變量x副本到工做內存
2 給x減1
3 將x減1後的值寫回主存
那麼顯然,最終的x的值是不可靠的。假設x如今爲10,線程a加1,線程b減1,從表面上看,彷佛最終x仍是爲10,可是多線程狀況下會有這種狀況發生:
1:線程a從主存讀取x副本到工做內存,工做內存中x值爲10
2:線程b從主存讀取x副本到工做內存,工做內存中x值爲10
3:線程a將工做內存中x加1,工做內存中x值爲11
4:線程a將x提交主存中,主存中x爲11
5:線程b將工做內存中x值減1,工做內存中x值爲9
6:線程b將x提交到中主存中,主存中x爲9
一樣,x有可能爲11,若是x是一個銀行帳戶,線程a存款,線程b扣款,顯然這樣是有嚴重問題的,要解決這個問題,必須保證線程a和線程b是有序執行的, 而且每一個線程執行的加1或減1是一個原子操做。看看下面代碼: jvm
Java代碼 性能
public class Account { 測試
private int balance; this
public Account(int balance) {
this.balance = balance;
}
public int getBalance() {
return balance;
}
public void add(int num) {
balance = balance + num;
}
public void withdraw(int num) {
balance = balance - num;
}
public static void main(String[] args) throws InterruptedException {
Account account = new Account(1000);
Thread a = new Thread(new AddThread(account, 20), "add");
Thread b = new Thread(new WithdrawThread(account, 20), "withdraw");
a.start();
b.start();
a.join();
b.join();
System.out.println(account.getBalance());
}
static class AddThread implements Runnable {
Account account;
int amount;
public AddThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 200000; i++) {
account.add(amount);
}
}
}
static class WithdrawThread implements Runnable {
Account account;
int amount;
public WithdrawThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 100000; i++) {
account.withdraw(amount);
}
}
}
}
public class Account { private int balance; public Account(int balance) { this.balance = balance; } public int getBalance() { return balance; } public void add(int num) { balance = balance + num; } public void withdraw(int num) { balance = balance - num; } public static void main(String[] args) throws InterruptedException { Account account = new Account(1000); Thread a = new Thread(new AddThread(account, 20), "add"); Thread b = new Thread(new WithdrawThread(account, 20), "withdraw"); a.start(); b.start(); a.join(); b.join(); System.out.println(account.getBalance()); } static class AddThread implements Runnable { Account account; int amount; public AddThread(Account account, int amount) { this.account = account; this.amount = amount; } public void run() { for (int i = 0; i < 200000; i++) { account.add(amount); } } } static class WithdrawThread implements Runnable { Account account; int amount; public WithdrawThread(Account account, int amount) { this.account = account; this.amount = amount; } public void run() { for (int i = 0; i < 100000; i++) { account.withdraw(amount); } } } }
第一次執行結果爲10200,第二次執行結果爲1060,每次執行的結果都是不肯定的,由於線程的執行順序是不可預見的。這是java同步產生的根 源,synchronized關鍵字保證了多個線程對於同步塊是互斥的,synchronized做爲一種同步手段,解決java多線程的執行有序性和內 存可見性,而volatile關鍵字之解決多線程的內存可見性問題。後面將會詳細介紹。
synchronized關鍵 字
上面說了,java用synchronized關鍵字作爲多線程併發環境的執行有序性的保證手段之一。當一段代碼會修改共享變量,這一段代碼成爲互斥區或 臨界區,爲了保證共享變量的正確性,synchronized標示了臨界區。典型的用法以下:
Java代碼
synchronized(鎖){
臨界區代碼
}
synchronized(鎖){ 臨界區代碼 }
爲了保證銀行帳戶的安全,能夠操做帳戶的方法以下:
public synchronized void add(int num) {
balance = balance + num;
}
public synchronized void withdraw(int num) {
balance = balance - num;
}
public synchronized void add(int num) { balance = balance + num; } public synchronized void withdraw(int num) { balance = balance - num; }
剛纔不是說了synchronized的用法是這樣的嗎:
Java代碼
synchronized(鎖){
臨界區代碼
}
synchronized(鎖){ 臨界區代碼 }
那麼對於public synchronized void add(int num)這種狀況,意味着什麼呢?其實這種狀況,鎖就是這個方法所在的對象。同理,若是方法是public static synchronized void add(int num),那麼鎖就是這個方法所在的class。
理論上,每一個對象均可以作爲鎖,但一個對象作爲鎖時,應該被多個線程共享,這樣才顯得有意義,在併發環境下,一個沒有共享的對象做爲鎖是沒有意義的。假如 有這樣的代碼:
Java代碼
public class ThreadTest{
public void test(){
Object lock=new Object();
synchronized (lock){
//do something
}
}
}
public class ThreadTest{ public void test(){ Object lock=new Object(); synchronized (lock){ //do something } } }
lock變量做爲一個鎖存在根本沒有意義,由於它根本不是共享對象,每一個線程進來都會執行Object lock=new Object();每一個線程都有本身的lock,根本不存在鎖競爭。
每一個鎖對象都有兩個隊列,一個是就緒隊列,一個是阻塞隊列,就緒隊列存儲了將要得到鎖的線程,阻塞隊列存儲了被阻塞的線程,當一個被線程被喚醒 (notify)後,纔會進入到就緒隊列,等待cpu的調度。當一開始線程a第一次執行account.add方法時,jvm會檢查鎖對象account 的就緒隊列是否已經有線程在等待,若是有則代表account的鎖已經被佔用了,因爲是第一次運行,account的就緒隊列爲空,因此線程a得到了鎖, 執行account.add方法。若是剛好在這個時候,線程b要執行account.withdraw方法,由於線程a已經得到了鎖尚未釋放,因此線程 b要進入account的就緒隊列,等到獲得鎖後才能夠執行。
一個線程執行臨界區代碼過程以下:
1 得到同步鎖
2 清空工做內存
3 從主存拷貝變量副本到工做內存
4 對這些變量計算
5 將變量從工做內存寫回到主存
6 釋放鎖
可見,synchronized既保證了多線程的併發有序性,又保證了多線程的內存可見性。
生產者/消費者模式
生產者/消費者模式實際上是一種很經典的線程同步模型,不少時候,並非光保證多個線程對某共享資源操做的互斥性就夠了,每每多個線程之間都是有協做的。
假設有這樣一種狀況,有一個桌子,桌子上面有一個盤子,盤子裏只能放一顆雞蛋,A專門往盤子裏放雞蛋,若是盤子裏有雞蛋,則一直等到盤子裏沒雞蛋,B專門 從盤子裏拿雞蛋,若是盤子裏沒雞蛋,則等待直到盤子裏有雞蛋。其實盤子就是一個互斥區,每次往盤子放雞蛋應該都是互斥的,A的等待其實就是主動放棄鎖,B 等待時還要提醒A放雞蛋。
如何讓線程主動釋放鎖
很簡單,調用鎖的wait()方法就好。wait方法是從Object來的,因此任意對象都有這個方法。看這個代碼片斷:
Java代碼
Object lock=new Object();//聲明瞭一個對象做爲鎖
synchronized (lock) {
balance = balance - num;
//這裏放棄了同步鎖,好不容易獲得,又放棄了
lock.wait();
}
Object lock=new Object();//聲明瞭一個對象做爲鎖 synchronized (lock) { balance = balance - num; //這裏放棄了同步鎖,好不容易獲得,又放棄了 lock.wait(); }
若是一個線程得到了鎖lock,進入了同步塊,執行lock.wait(),那麼這個線程會進入到lock的阻塞隊列。若是調用 lock.notify()則會通知阻塞隊列的某個線程進入就緒隊列。
聲明一個盤子,只能放一個雞蛋
Java代碼
import java.util.ArrayList;
import java.util.List;
public class Plate {
List<Object> eggs = new ArrayList<Object>();
public synchronized Object getEgg() {
while(eggs.size() == 0) {
try {
wait();
} catch (InterruptedException e) {
}
}
Object egg = eggs.get(0);
eggs.clear();// 清空盤子
notify();// 喚醒阻塞隊列的某線程到就緒隊列
System.out.println("拿到雞蛋");
return egg;
}
public synchronized void putEgg(Object egg) {
while(eggs.size() > 0) {
try {
wait();
} catch (InterruptedException e) {
}
}
eggs.add(egg);// 往盤子裏放雞蛋
notify();// 喚醒阻塞隊列的某線程到就緒隊列
System.out.println("放入雞蛋");
}
static class AddThread extends Thread{
private Plate plate;
private Object egg=new Object();
public AddThread(Plate plate){
this.plate=plate;
}
public void run(){
for(int i=0;i<5;i++){
plate.putEgg(egg);
}
}
}
static class GetThread extends Thread{
private Plate plate;
public GetThread(Plate plate){
this.plate=plate;
}
public void run(){
for(int i=0;i<5;i++){
plate.getEgg();
}
}
}
public static void main(String args[]){
try {
Plate plate=new Plate();
Thread add=new Thread(new AddThread(plate));
Thread get=new Thread(new GetThread(plate));
add.start();
get.start();
add.join();
get.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("測試結束");
}
}
import java.util.ArrayList; import java.util.List; public class Plate { List<Object> eggs = new ArrayList<Object>(); public synchronized Object getEgg() { while(eggs.size() == 0) { try { wait(); } catch (InterruptedException e) { } } Object egg = eggs.get(0); eggs.clear();// 清空盤子 notify();// 喚醒阻塞隊列的某線程到就緒隊列 System.out.println("拿到雞蛋"); return egg; } public synchronized void putEgg(Object egg) { while(eggs.size() > 0) { try { wait(); } catch (InterruptedException e) { } } eggs.add(egg);// 往盤子裏放雞蛋 notify();// 喚醒阻塞隊列的某線程到就緒隊列 System.out.println("放入雞蛋"); } static class AddThread extends Thread{ private Plate plate; private Object egg=new Object(); public AddThread(Plate plate){ this.plate=plate; } public void run(){ for(int i=0;i<5;i++){ plate.putEgg(egg); } } } static class GetThread extends Thread{ private Plate plate; public GetThread(Plate plate){ this.plate=plate; } public void run(){ for(int i=0;i<5;i++){ plate.getEgg(); } } } public static void main(String args[]){ try { Plate plate=new Plate(); Thread add=new Thread(new AddThread(plate)); Thread get=new Thread(new GetThread(plate)); add.start(); get.start(); add.join(); get.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("測試結束"); } }
執行結果:
放入雞蛋
拿到雞蛋
放入雞蛋
拿到雞蛋
放入雞蛋
拿到雞蛋
放入雞蛋
拿到雞蛋
放入雞蛋
拿到雞蛋
測試結束
放入雞蛋 拿到雞蛋 放入雞蛋 拿到雞蛋 放入雞蛋 拿到雞蛋 放入雞蛋 拿到雞蛋 放入雞蛋 拿到雞蛋 測試結束
聲明一個Plate對象爲plate,被線程A和線程B共享,A專門放雞蛋,B專門拿雞蛋。假設
1 開始,A調用plate.putEgg方法,此時eggs.size()爲0,所以順利將雞蛋放到盤子,還執行了notify()方法,喚醒鎖的阻塞隊列 的線程,此時阻塞隊列尚未線程。
2 又有一個A線程對象調用plate.putEgg方法,此時eggs.size()不爲0,調用wait()方法,本身進入了鎖對象的阻塞隊列。
3 此時,來了一個B線程對象,調用plate.getEgg方法,eggs.size()不爲0,順利的拿到了一個雞蛋,還執行了notify()方法,喚 醒鎖的阻塞隊列的線程,此時阻塞隊列有一個A線程對象,喚醒後,它進入到就緒隊列,就緒隊列也就它一個,所以立刻獲得鎖,開始往盤子裏放雞蛋,此時盤子是 空的,所以放雞蛋成功。
4 假設接着來了線程A,就重複2;假設來料線程B,就重複3。
整個過程都保證了放雞蛋,拿雞蛋,放雞蛋,拿雞蛋。
volatile關鍵字
volatile是java提供的一種同步手段,只不過它是輕量級的同步,爲何這麼說,由於volatile只能保證多線程的內存可見性,不能保證多線 程的執行有序性。而最完全的同步要保證有序性和可見性,例如synchronized。任何被volatile修飾的變量,都不拷貝副本到工做內存,任何 修改都及時寫在主存。所以對於Valatile修飾的變量的修改,全部線程立刻就能看到,可是volatile不能保證對變量的修改是有序的。什麼意思 呢?假若有這樣的代碼:
Java代碼
public class VolatileTest{
public volatile int a;
public void add(int count){
a=a+count;
}
}
public class VolatileTest{ public volatile int a; public void add(int count){ a=a+count; } }
當一個VolatileTest對象被多個線程共享,a的值不必定是正確的,由於a=a+count包含了好幾步操做,而此時多個線程的執行是無序的,因 爲沒有任何機制來保證多個線程的執行有序性和原子性。volatile存在的意義是,任何線程對a的修改,都會立刻被其餘線程讀取到,由於直接操做主存, 沒有線程對工做內存和主存的同步。因此,volatile的使用場景是有限的,在有限的一些情形下可使用 volatile 變量替代鎖。要使 volatile 變量提供理想的線程安全,必須同時知足下面兩個條件:
1)對 變量的寫操做不依賴於當前值。
2)該變量沒有包含在具備其餘變量的不變式中
volatile只保證了可見性,因此Volatile適合直接賦值的場景,如
Java代碼
public class VolatileTest{
public volatile int a;
public void setA(int a){
this.a=a;
}
}
public class VolatileTest{ public volatile int a; public void setA(int a){ this.a=a; } }
在沒有volatile聲明時,多線程環境下,a的最終值不必定是正確的,由於this.a=a;涉及到給a賦值和將a同步回主存的步驟,這個順序可能被 打亂。若是用volatile聲明瞭,讀取主存副本到工做內存和同步a到主存的步驟,至關因而一個原子操做。因此簡單來講,volatile適合這種場 景:一個變量被多個線程共享,線程直接給這個變量賦值。這是一種很簡單的同步場景,這時候使用volatile的開銷將會很是小。