使用ixstat –x 1 能夠每隔1秒鐘採集全部設備的io信息。其中的1相似於使用「vmstat 1」後面的1。ios
―――――――――――――――――――――――――――――――――――――――算法
Linux 2.4.31-2bs (zjm-testing-ecom504.zjm.baidu.com) 01/14/2008性能
avg-cpu: %user %nice %sys %idle優化
0.11 0.16 0.37 99.37spa
Device: 隊列
rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util內存
/dev/cciss/c0d0ci
0.02 0.05 0.01 0.19 0.23 1.98 0.11 0.99 10.87 0.03 12.73 9.73 it
0.20io
――――――――――――――――――――――――――――――――――――――――――――――
Avg-cpu
打印的是cpu相關的信息。不作介紹了。
每一個設備的io相關的參數以下:
rrqm/s: 每秒進行 merge 的讀操做數目。即 delta(rmerge)/s
wrqm/s: 每秒進行 merge 的寫操做數目。即 delta(wmerge)/s
r/s: 每秒完成的讀 I/O 設備次數。即 delta(rio)/s
w/s: 每秒完成的寫 I/O 設備次數。即 delta(wio)/s
rsec/s: 每秒讀扇區數。即 delta(rsect)/s
wsec/s: 每秒寫扇區數。即 delta(wsect)/s
rkB/s: 每秒讀K字節數。是 rsect/s 的一半,由於每扇區大小爲512字節。
wkB/s: 每秒寫K字節數。是 wsect/s 的一半。
avgrq-sz: 平均每次設備I/O操做的數據大小 (扇區)。即 delta(rsect+wsect)/delta(rio+wio)
avgqu-sz: 平均I/O隊列長度。即 delta(aveq)/s/1000 (由於aveq的單位爲毫秒)。
await: 平均每次設備I/O操做的等待時間 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm: 平均每次設備I/O操做的服務時間 (毫秒)。即 delta(use)/delta(rio+wio)
%util: 一秒中有百分之多少的時間用於 I/O 操做,或者說一秒中有多少時間 I/O 隊列是非空的。即 delta(use)/s/1000 (由於use的單位爲毫秒).若是 %util 接近 100%,說明產生的I/O請求太多,I/O系統已經滿負荷,該磁盤可能存在瓶頸。
舉一個例子,咱們在超市排隊 checkout 時,怎麼決定該去哪一個交款臺呢? 首當是看排的隊人數,5我的總比20人要快吧? 除了數人頭,咱們也經常看看前面人購買的東西多少,若是前面有個採購了一星期食品的大媽,那麼能夠考慮換個隊排了。還有就是收銀員的速度了,若是碰上了連錢都點不清楚的新手,那就有的等了。另外,時機也很重要,可能 5 分鐘前還人滿爲患的收款臺,如今已經是人去樓空,這時候交款但是很爽啊,固然,前提是那過去的 5分鐘裏所作的事情比排隊要有意義。
I/O 系統也和超市排隊有不少相似之處:
r/s+w/s 相似於交款人的總數
平均隊列長度(avgqu-sz)相似於單位時間裏平均排隊人的個數
平均服務時間(svctm)相似於收銀員的收款速度
平均等待時間(await)相似於平均每人的等待時間
平均I/O數據(avgrq-sz)相似於平均每人所買的東西多少
I/O 操做率 (%util)相似於收款臺前有人排隊的時間比例。
svctm 通常要小於 await (由於同時等待的請求的等待時間被重複計算了), svctm 的大小通常和磁盤性能有關,CPU/內存的負荷也會對其有影響,請求過多也會間接致使 svctm 的增長。
await 的大小通常取決於服務時間(svctm) 以及 I/O 隊列的長度和 I/O 請求的發出模式。若是 svctm 比較接近 await,說明 I/O 幾乎沒有等待時間;若是 await 遠大於 svctm,說明 I/O 隊列太長,應用獲得的響應時間變慢,若是響應時間超過了用戶能夠允許的範圍,這時能夠考慮更換更快的磁盤,調整內核 elevator 算法,優化應用,或者升級 CPU。
隊列長度(avgqu-sz)也可做爲衡量系統 I/O 負荷的指標,但因爲 avgqu-sz 是按照單位時間的平均值,因此不能反映瞬間的 I/O 洪水。
# iostat -x 1
avg-cpu: %user %nice %sys %idle
16.24 0.00 4.31 79.44
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/cciss/c0d0
0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29
/dev/cciss/c0d0p1
0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29
/dev/cciss/c0d0p2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
上面的 iostat 輸出代表秒有 28.57 次設備 I/O 操做: delta(io)/s = r/s +w/s = 1.02+27.55 = 28.57 (次/秒) 其中寫操做佔了主體 (w:r = 27:1)。平均每次設備 I/O 操做只須要 5ms 就能夠完成,但每一個 I/O 請求卻須要等上 78ms,爲何? 由於發出的 I/O 請求太多 (每秒鐘約 29 個),假設這些請求是同時發出的,那麼平均等待時間能夠這樣計算:
平均等待時間 = 單個 I/O 服務時間 * ( 1 + 2 + ... + 請求總數-1) / 請求總數。應用到上面的例子: 平均等待時間 = 5ms * (1+2+...+28)/29 = 70ms,和iostat 給出的 78ms 的平均等待時間很接近。這反過來代表 I/O 是同時發起的。
每秒發出的 I/O 請求不少 (約 29 個),平均隊列卻不長 (只有 2 個 左右),這代表這 29 個請求的到來並不均勻,大部分時間 I/O 是空閒的。一秒中有14.29% 的時間 I/O 隊列中是有請求的,也就是說,85.71% 的時間裏 I/O 系統無事可作,全部 29 個 I/O 請求都在142毫秒以內處理掉了。delta(ruse+wuse)/delta(io) = await = 78.21 => delta(ruse+wuse)/s =78.21 * delta(io)/s = 78.21*28.57 = 2232.8,代表每秒內的I/O請求總共須要等待2232.8ms。因此平均隊列長度應爲 2232.8ms/1000ms = 2.23,而 iostat 給出的平均隊列長度 (avgqu-sz) 卻爲 22.35,爲何?! 由於 iostat 中有bug,avgqu-sz 值應爲 2.23,而不是 22.35