深刻理解go-channel和select的原理

Go最吸引人的兩個地方,除了goroutine,也就是channel了,同時,我一直很納悶,select究竟是怎麼實現的?跟我以前的文章同樣,部分無關的代碼直接省略golang

1. 結構概覽

1.1. hchan

這個就是channel的結構體了數組

type hchan struct {
   qcount   uint           // 隊列中數據總量
   dataqsiz uint           // 環形隊列的大小,> 0表示有緩衝,= 0表示無緩衝
   buf      unsafe.Pointer // 指向元素數組的指針
   elemsize uint16         // 單個元素的大小
   closed   uint32         // 代表是否close了
   elemtype *_type                  // 元素類型,後面寫interface的時候再具體介紹
   sendx    uint                    // send數組的索引, c <- i
   recvx    uint                    // receive 數組的索引 <- c
   recvq    waitq                   // 等待recv 數據的goroutine的鏈表
   sendq    waitq                   // 等待send數據的goroutine鏈表
   lock mutex
}

1.2. waitq

type waitq struct {
   first *sudog
   last  *sudog
}

1.3. sudog

sudog 表明了一個在等待中的g緩存

type sudog struct {
   g *g

   // isSelect indicates g is participating in a select, so
   // g.selectDone must be CAS'd to win the wake-up race.
   isSelect bool
   next     *sudog
   prev     *sudog
   elem     unsafe.Pointer // 數據元素, c <- 1, 此時就是 1

   // The following fields are never accessed concurrently.
   // For channels, waitlink is only accessed by g.
   // For semaphores, all fields (including the ones above)
   // are only accessed when holding a semaRoot lock.

   acquiretime int64
   releasetime int64
   ticket      uint32
   parent      *sudog // semaRoot binary tree
   waitlink    *sudog // g.waiting list or semaRoot
   waittail    *sudog // semaRoot
   c           *hchan // channel
}

1.4. hcase

這個是 select 中一個case生成的結構體app

type scase struct {
   c           *hchan         // chan
   elem        unsafe.Pointer // data element
   kind        uint16  // 當前case的類型,nil recv send 仍是 default
   pc          uintptr // race pc (for race detector / msan)
   releasetime int64
}

經過上面的結構,咱們能夠看出,channel的內部實質就是一個緩衝池+兩個隊列(send recv),那麼數據是如何交互的呢,網上有個示意圖,展現的仍是比較形象的異步

1.5. 圖示

1.5.1. 無緩衝(同步)

1.5.2. 帶緩衝(異步)

綜合 上面的結構和圖示,大概能夠推測出 channel 的send recv流程函數

  1. 若是是recv(<-channel )請求,則先去判斷一個sendq隊列裏有沒有人等待這放數據工具

    1. 若是sendq隊列不爲空且緩衝池不爲空,那麼這個sendq隊列是在等待着放數據,recv的這個g從緩衝池拿數據,而後把sendq的第一個g攜帶的數據放入到buf緩衝池裏面便可
    2. 若是sendq不爲空可是緩衝池爲空,那麼這個是不帶緩衝池的chan,我從sendq裏面拿第一個g的數據就ok了
    3. 若是sendq爲空,那就去緩衝池看看,緩衝池有數據,那就拿了就走了
    4. 若是sendq爲空,緩衝池也沒有數據,那就在這等着吧
  2. 若是send,流程跟recv是同樣的
  3. 若是此時 channel 被close了,喚醒全部等待的隊列 (sendq 或 recvq)裏面的等待的g,告訴他們channel.close = true

接下來就是跟蹤源碼,證實及糾正猜測了oop

2. 源碼分析

2.1. 收發

2.1.1. main

咱們使用 go tool 工具分析一下,channel 生成, c <- i, <- c 在底層都是經過什麼方法實現的源碼分析

func main() {
    c1 := make(chan int)
    c2 := make(chan int, 2)
    go func() {
        c1 <- 1
        c2 <- 2
    }()
    <-c1
    <-c2
    close(c1)
    close(c2)
}
go build -gcflags=all="-N -l" main.go

go tool objdump -s "main.main" main學習

咱們把 CALL 過濾出來後

▶ go tool objdump -s "main\.main" main | grep CALL
  main.go:4             0x4548d5                e806fbfaff              CALL runtime.makechan(SB)               
  main.go:5             0x4548f8                e8e3fafaff              CALL runtime.makechan(SB)               
  main.go:6             0x454929                e822a1fdff              CALL runtime.newproc(SB)                
  main.go:10            0x454940                e81b08fbff              CALL runtime.chanrecv1(SB)              
  main.go:11            0x454957                e80408fbff              CALL runtime.chanrecv1(SB)              
  main.go:12            0x454965                e82605fbff              CALL runtime.closechan(SB)              
  main.go:13            0x454973                e81805fbff              CALL runtime.closechan(SB)              
  main.go:3             0x454982                e8d981ffff              CALL runtime.morestack_noctxt(SB)       
  main.go:7             0x454a32                e899fcfaff              CALL runtime.chansend1(SB)              
  main.go:8             0x454a4c                e87ffcfaff              CALL runtime.chansend1(SB)              
  main.go:6             0x454a5b                e80081ffff              CALL runtime.morestack_noctxt(SB)
  • makechan: 建立channel的函數,有無緩衝區的都是同樣的
  • chanrecv1: <- c1 時,調用的函數
  • closechan: close(c1) 時調用的函數,關閉channel使用
  • chansend1: c1 <- 1 時,也就是發送數據用到的函數

2.1.2. makechan

建立channel這一塊主要就是給結構體和bug緩衝池分配內存,而後初始化一下hchan的結構體

func makechan(t *chantype, size int) *hchan {
    elem := t.elem

    // compiler checks this but be safe.
    // 校驗elem的大小限制
    if elem.size >= 1<<16 {
        throw("makechan: invalid channel element type")
    }
    // 對齊限制
    if hchanSize%maxAlign != 0 || elem.align > maxAlign {
        throw("makechan: bad alignment")
    }
    // size,即make(chan int, 2)中的2,默認不傳爲0, 判斷size的上限和下限
    if size < 0 || uintptr(size) > maxSliceCap(elem.size) || uintptr(size)*elem.size > maxAlloc-hchanSize {
        panic(plainError("makechan: size out of range"))
    }

    var c *hchan
    switch {
    case size == 0 || elem.size == 0:
        // 隊列或者元素size爲0,不分配緩衝池
        // Queue or element size is zero.
        c = (*hchan)(mallocgc(hchanSize, nil, true))
        // Race detector uses this location for synchronization.
        // buf指向自身,沒有分配內存
        c.buf = c.raceaddr()
    case elem.kind&kindNoPointers != 0:
        // Elements do not contain pointers.
        // Allocate hchan and buf in one call.
        // 分配一整塊內存,用於存儲hchan和 buf
        c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))
        c.buf = add(unsafe.Pointer(c), hchanSize)
    default:
        // Elements contain pointers.
        // 是指針類型,那正常分配hchan結構體便可,buf單獨分配
        c = new(hchan)
        c.buf = mallocgc(uintptr(size)*elem.size, elem, true)
    }
    // 初始化 hchan的屬性
    c.elemsize = uint16(elem.size)
    c.elemtype = elem
    c.dataqsiz = uint(size)

    return c
}

2.1.3. chanrecv1

chanrecv1 調用了chanrecv 實現,chanrecv 監聽channel並接收 channel裏面的數據,並寫入到 ep 裏面

func chanrecv1(c *hchan, elem unsafe.Pointer) {
    chanrecv(c, elem, true)
}

func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
    lock(&c.lock)
    if c.closed != 0 && c.qcount == 0 {
        unlock(&c.lock)
        if ep != nil {
            // 清空地址裏面的數據值,但不會改變類型
            typedmemclr(c.elemtype, ep)
        }
        return true, false
    }

    if sg := c.sendq.dequeue(); sg != nil {
        // 獲取一個等待send的sudog,而後判斷channel是否有緩衝區,若是有無緩衝區,獲取sudog裏面的數據便可, 若是channel有緩衝區,則獲取緩衝區的頭元素,把獲取到的sudog的元素添加到緩衝區的隊尾
        recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
        return true, true
    }

    if c.qcount > 0 {
        // Receive directly from queue
        // 緩衝區有數據,且send隊列沒有等待發送數據的sudog,(異步且緩衝區剛滿或未滿的狀況),根據recvx索引,獲取數據
        qp := chanbuf(c, c.recvx)
        // 若是ep不爲nil,拷貝 gp 到 ep
        if ep != nil {
            typedmemmove(c.elemtype, ep, qp)
        }
        // gp地址裏的數據清除
        typedmemclr(c.elemtype, qp)
        // 更新下一次recv的索引
        c.recvx++
        if c.recvx == c.dataqsiz {
            c.recvx = 0
        }
        // 更新 qcount計數
        c.qcount--
        unlock(&c.lock)
        return true, true
    }

    if !block {
        unlock(&c.lock)
        return false, false
    }

    // no sender available: block on this channel.
    // 找不到send 的sudog,緩衝區也沒有數據,須要阻塞
    gp := getg()
    // 獲取一個sudog的結構,並更新這個sudog的屬性
    mysg := acquireSudog()
    mysg.releasetime = 0
    // No stack splits between assigning elem and enqueuing mysg
    // on gp.waiting where copystack can find it.
    mysg.elem = ep
    mysg.waitlink = nil
    gp.waiting = mysg
    mysg.g = gp
    mysg.isSelect = false
    mysg.c = c
    gp.param = nil
    // 把這個sudog放入到recv的隊列
    c.recvq.enqueue(mysg)
    // 休眠這個g,當g被喚醒後,從這裏繼續執行
    goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)

    // someone woke us up
    if mysg != gp.waiting {
        throw("G waiting list is corrupted")
    }
    gp.waiting = nil
    if mysg.releasetime > 0 {
        blockevent(mysg.releasetime-t0, 2)
    }
    closed := gp.param == nil
    gp.param = nil
    mysg.c = nil
    // 清理完sudog的屬性後,把sudog釋放
    releaseSudog(mysg)
    return true, !closed
}

經過上面的邏輯,能夠看出來數據傳輸的四種可能

  • sendq隊列不爲空,可是buf爲空(同步有阻塞g的狀況): 獲取sendq隊列頭的sudog,並把sudog.elem數據拷貝目標地址 ep
  • sendq隊列不爲空,buf也不爲空(異步有阻塞g的狀況):把buf頭元素拷貝到目標地址ep, 獲取sendq隊列頭的sudog,而後把sudog.elem的數據拷貝到buf隊尾,釋放sudog
  • sendq隊列爲空,可是buf不爲空(異步無阻塞g的狀況):把buf頭元素拷貝到目標地址ep便可
  • sendq隊列爲空,buf也爲空(同步無阻塞g的狀況):這時候就須要就須要阻塞自身,獲取一個sudog的結構,放到channel的recvq隊列裏,等待send的g來喚醒本身,並把本身的數據拷貝到目標地址

這裏細想一下,其實會發現一個問題,在上面L66 goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3) 休眠g後,g被喚醒後從這裏開始繼續往下執行,好像沒有什麼邏輯顯示,這個recv g獲取到了數據,這個g阻塞在這裏是爲了等數據來的,可是下面的邏輯,居然沒有一個是操做數據的?

接下來分析的 recv 這個方法就能理解了

2.1.3.1. recv

func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
    // 若是是無緩衝區的channel
    if c.dataqsiz == 0 {
        if ep != nil {
            // copy data from sender
            // 直接在兩個g之間進行數據拷貝
            recvDirect(c.elemtype, sg, ep)
        }
    } else {
        // 這裏是有緩衝區纔會走到的邏輯
        // Queue is full. Take the item at the
        // head of the queue. Make the sender enqueue
        // its item at the tail of the queue. Since the
        // queue is full, those are both the same slot.
        // 由於在sendq隊列獲取到了等待發送數據的sudog,因此說明緩衝區已經滿了,根據rcvx獲取buf裏面隊列首元素的地址
        qp := chanbuf(c, c.recvx)
        // copy data from queue to receiver
        if ep != nil {
            // 把buf裏面的數據拷貝到ep裏面
            typedmemmove(c.elemtype, ep, qp)
        }
        // copy data from sender to queue
        // 把從sendq隊列獲取到的sudog的數據拷貝到剛剛的buf地址裏面,並更新buf裏面recvx的索引,也就是表名,buf隊列的首元素地址後移
        typedmemmove(c.elemtype, qp, sg.elem)
        c.recvx++
        if c.recvx == c.dataqsiz {
            c.recvx = 0
        }
        c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
    }
    // 清空sudog的數據
    sg.elem = nil
    gp := sg.g
    unlockf()
    gp.param = unsafe.Pointer(sg)
    if sg.releasetime != 0 {
        sg.releasetime = cputicks()
    }
    // 喚醒sendq裏面獲取的sugog對應的g
    goready(gp, skip+1)
}

結合上面的邏輯就發現,g在被喚醒以前,跟g相關的sudog的數據就已經被channel使用掉了,因此當g被喚醒時,無需處理跟數據傳輸相關的邏輯了

2.1.3.2. acquireSudog

獲取一個sudog的結構,這裏跟cache和scheduler調度待運行g的隊列同樣,使用了 p sched 的兩級緩存,也就是本地緩存一個sudog的數組,同時在全局的 sched結構上面也維護了一個sudogcache的鏈表,當p本地的sudog不足或者過多的時候,就去跟全局的sched 進行平衡

func acquireSudog() *sudog {
    // 加鎖
    mp := acquirem()
    pp := mp.p.ptr()
    // 若是當前緩存的沒有sudog了,則去全局的sched中批量拉取一些sudog緩存到當前p
    if len(pp.sudogcache) == 0 {
        lock(&sched.sudoglock)
        // First, try to grab a batch from central cache.
        for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
            s := sched.sudogcache
            sched.sudogcache = s.next
            s.next = nil
            pp.sudogcache = append(pp.sudogcache, s)
        }
        unlock(&sched.sudoglock)
        // If the central cache is empty, allocate a new one.
        if len(pp.sudogcache) == 0 {
            pp.sudogcache = append(pp.sudogcache, new(sudog))
        }
    }
    // 從本地緩存的sudog裏面,獲取第一個返回,並更新sudogcache slice
    n := len(pp.sudogcache)
    s := pp.sudogcache[n-1]
    pp.sudogcache[n-1] = nil
    pp.sudogcache = pp.sudogcache[:n-1]
    if s.elem != nil {
        throw("acquireSudog: found s.elem != nil in cache")
    }
    // 去鎖
    releasem(mp)
    return s
}

2.1.3.3. releaseSudog

releaseSudog 就是釋放當前使用的sudog,並平衡p本地緩存的sudog和全局隊列的sudog

func releaseSudog(s *sudog) {
    mp := acquirem() // avoid rescheduling to another P
    pp := mp.p.ptr()
    // 若是 p本地緩存的sudog的數量超出這個slice的最大長度,則平衡通常的sudog到全局的sched上面
    if len(pp.sudogcache) == cap(pp.sudogcache) {
        // Transfer half of local cache to the central cache.
        var first, last *sudog
        for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
            n := len(pp.sudogcache)
            p := pp.sudogcache[n-1]
            pp.sudogcache[n-1] = nil
            pp.sudogcache = pp.sudogcache[:n-1]
            if first == nil {
                first = p
            } else {
                last.next = p
            }
            last = p
        }
        lock(&sched.sudoglock)
        last.next = sched.sudogcache
        sched.sudogcache = first
        unlock(&sched.sudoglock)
    }
    // 把釋放的sudog放到本地緩存的slice裏面
    pp.sudogcache = append(pp.sudogcache, s)
    releasem(mp)
}

2.1.4. chansend1

發送邏輯跟接收的邏輯差很少

func chansend1(c *hchan, elem unsafe.Pointer) {
    chansend(c, elem, true, getcallerpc())
}

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
    lock(&c.lock)
    // 從recvq隊列獲取一個 sudog
    if sg := c.recvq.dequeue(); sg != nil {
        // Found a waiting receiver. We pass the value we want to send
        // directly to the receiver, bypassing the channel buffer (if any).
        send(c, sg, ep, func() { unlock(&c.lock) }, 3)
        return true
    }
    // 若是qcount < dataqsiz,說明這個channel是帶buf的channel,並且buf沒有滿,直接把數據ep添加到buf隊尾便可
    if c.qcount < c.dataqsiz {
        // Space is available in the channel buffer. Enqueue the element to send.
        qp := chanbuf(c, c.sendx)
        typedmemmove(c.elemtype, qp, ep)
        c.sendx++
        if c.sendx == c.dataqsiz {
            c.sendx = 0
        }
        // 更新qcount
        c.qcount++
        unlock(&c.lock)
        return true
    }

    if !block {
        unlock(&c.lock)
        return false
    }

    // Block on the channel. Some receiver will complete our operation for us.
    // 走到這裏說明,buf滿了或者沒有buf,並且recvq隊列爲空,就須要阻塞當前的g,等待有其餘的g接收數據
    gp := getg()
    // 獲取一個sudog,並初始化相關屬性
    mysg := acquireSudog()
    mysg.releasetime = 0
    if t0 != 0 {
        mysg.releasetime = -1
    }
    // No stack splits between assigning elem and enqueuing mysg
    // on gp.waiting where copystack can find it.
    mysg.elem = ep
    mysg.waitlink = nil
    mysg.g = gp
    mysg.isSelect = false
    mysg.c = c
    gp.waiting = mysg
    gp.param = nil
    // 把sudog入隊sendq
    c.sendq.enqueue(mysg)
    // 休眠當前g,等待其餘的g recv數據,recv數據後,喚醒這個g
    goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3)

    // someone woke us up.
    if mysg != gp.waiting {
        throw("G waiting list is corrupted")
    }
    gp.waiting = nil
    if gp.param == nil {
        if c.closed == 0 {
            throw("chansend: spurious wakeup")
        }
        panic(plainError("send on closed channel"))
    }
    gp.param = nil
    if mysg.releasetime > 0 {
        blockevent(mysg.releasetime-t0, 2)
    }
    mysg.c = nil
    // 釋放sudog
    releaseSudog(mysg)
    return true
}

2.1.4.1. send

sendrecv 的邏輯也是大體相同的,並且由於從recvq裏面拿到了一個sudog,因此說明緩衝區爲空,那麼send方法就不須要考慮往緩衝區添加數據了,sendrecv更加簡單,只須要交換數據、喚醒g便可

func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
    if sg.elem != nil {
        sendDirect(c.elemtype, sg, ep)
        sg.elem = nil
    }
    gp := sg.g
    unlockf()
    gp.param = unsafe.Pointer(sg)
    if sg.releasetime != 0 {
        sg.releasetime = cputicks()
    }
    goready(gp, skip+1)
}

2.1.5. closechan

收發數據已經結束了,最後就是關閉channel了

func closechan(c *hchan) {
    // nil chan 檢查
    if c == nil {
        panic(plainError("close of nil channel"))
    }

    lock(&c.lock)
    // closed chan 檢查
    if c.closed != 0 {
        unlock(&c.lock)
        panic(plainError("close of closed channel"))
    }
    // 設置c爲closed狀態
    c.closed = 1

    var glist *g

    // release all readers
    // 遍歷 recvq,清除sudog的數據,並把recvq中sudog對應的g串成一個鏈表
    for {
        sg := c.recvq.dequeue()
        if sg == nil {
            break
        }
        if sg.elem != nil {
            typedmemclr(c.elemtype, sg.elem)
            sg.elem = nil
        }
        if sg.releasetime != 0 {
            sg.releasetime = cputicks()
        }
        gp := sg.g
        gp.param = nil
        gp.schedlink.set(glist)
        glist = gp
    }

    // release all writers (they will panic)
    // 遍歷sendq,清除sudog的數據,並把sendq中的sudog中的g和recvq中的sudog一塊兒串成一個鏈表
    for {
        sg := c.sendq.dequeue()
        if sg == nil {
            break
        }
        sg.elem = nil
        if sg.releasetime != 0 {
            sg.releasetime = cputicks()
        }
        gp := sg.g
        gp.param = nil
        if raceenabled {
            raceacquireg(gp, c.raceaddr())
        }
        gp.schedlink.set(glist)
        glist = gp
    }
    unlock(&c.lock)

    // Ready all Gs now that we've dropped the channel lock.
    // 喚醒上面收集的全部的g
    for glist != nil {
        gp := glist
        glist = glist.schedlink.ptr()
        gp.schedlink = 0
        goready(gp, 3)
    }
}

chan close以後,全部阻塞的recvq 和 sendq(recvq和sendq只有有一個隊列存在)中的sudog,清除sudog的一些數據和狀態,設置 gp.param = nil, 讓上層邏輯知道這是由於 close chan致使的

喚醒全部的g以後,g就會 繼續執行 chansend 或者 chanrecv 中剩餘的邏輯,也就是釋放sudog(這也就是爲何 closechan 不須要釋放sudog的緣由)

2.1.6. 總結

語言的表述老是蒼白的,在網上找資料的時候正好看到了兩張流程圖,能夠結合着來看

發送流程(send)

接收流程(recv)

img

2.2. select

2.2.1. main

channel的收發流程在上面已經追蹤了,流程也已經清晰了,可是跟channel一塊兒使用的還有一個select,那select的流程又是什麼呢

咱們仍是用go tool工具分析一下

func main() {
    c1 := make(chan int)
    c2 := make(chan int)
    go func() {
        time.Sleep(time.Second)
        <-c2
        c1 <- 1
    }()
    select {
    case v := <-c1:
        fmt.Printf("%d <- c1", v)
    case c2 <- 1:
        fmt.Println("c2 <- 1")
    }
}

分析結果過濾一下CALL

main.go:9             0x4a05c6                e81542f6ff                      CALL runtime.makechan(SB)               
  main.go:10            0x4a05ec                e8ef41f6ff                      CALL runtime.makechan(SB)               
  main.go:11            0x4a0620                e82b3bf9ff                      CALL runtime.newproc(SB)                
  main.go:16            0x4a0654                e82c94fbff                      CALL 0x459a85                           
  main.go:16            0x4a06e3                e8d8b7f9ff                      CALL runtime.selectgo(SB)               
  main.go:18            0x4a074c                e8df8df6ff                      CALL runtime.convT2E64(SB)              
  main.go:18            0x4a07ec                e8cf89ffff                      CALL fmt.Printf(SB)                     
  main.go:18            0x4a0806                e8f587fbff                      CALL runtime.gcWriteBarrier(SB)         
  main.go:20            0x4a088c                e87f8bffff                      CALL fmt.Println(SB)                    
  main.go:8             0x4a0898                e85369fbff                      CALL runtime.morestack_noctxt(SB)       
  main.go:12            0x4a0945                e8868efaff              CALL time.Sleep(SB)                     
  main.go:13            0x4a095c                e8ff4bf6ff              CALL runtime.chanrecv1(SB)              
  main.go:14            0x4a0976                e85541f6ff              CALL runtime.chansend1(SB)              
  main.go:11            0x4a0985                e86668fbff              CALL runtime.morestack_noctxt(SB)

能夠看出來,select 的實現是靠 selectgo 函數的

覺得就這樣嗎,而後咱們就開始分析 selectgo 函數了,不,在我手賤的時候還發現了另外一種狀況

func main() {
    c1 := make(chan int)
    go func() {
        time.Sleep(time.Second)
        c1 <- 1
    }()
    select {
    case <-c1:
        fmt.Printf("c1 <- 1")
    default:
        fmt.Println("default")
    }
}

分析結果以下:

main.go:9             0x49eca8                e8335bf6ff              CALL runtime.makechan(SB)               
  main.go:11            0x49eccf                e85c54f9ff              CALL runtime.newproc(SB)                
  main.go:17            0x49ece6                e83570f6ff              CALL runtime.selectnbrecv(SB)           
  main.go:18            0x49ed1c                e88f8bffff              CALL fmt.Printf(SB)                     
  main.go:22            0x49ed8f                e86c8dffff              CALL fmt.Println(SB)                    
  main.go:8             0x49ed96                e8556cfbff              CALL runtime.morestack_noctxt(SB)       
  main.go:12            0x49ee35                e87692faff              CALL time.Sleep(SB)                     
  main.go:13            0x49ee4f                e87c5cf6ff              CALL runtime.chansend1(SB)              
  main.go:11            0x49ee5e                e88d6bfbff              CALL runtime.morestack_noctxt(SB)

能夠看到,這裏 select 的實現是依靠底層的 selectnbrecv 的函數的,若是,既然有 selectnbrecv 函數,會不會有 selectnbsend 函數呢,繼續試驗一下

func main() {
    c1 := make(chan int)
    go func() {
        time.Sleep(time.Second)
        <- c1
    }()
    select {
    case c1 <- 1:
        fmt.Printf("c1 <- 1")
    default:
        fmt.Println("default")
    }
}

分析j結果

main.go:9             0x49ecb3                e8285bf6ff                      CALL runtime.makechan(SB)               
  main.go:11            0x49ecda                e85154f9ff                      CALL runtime.newproc(SB)                
  main.go:17            0x49ed05                e81670f6ff                      CALL runtime.selectnbsend(SB)           
  main.go:18            0x49ed3b                e8708bffff                      CALL fmt.Printf(SB)                     
  main.go:22            0x49edb4                e8478dffff                      CALL fmt.Println(SB)                    
  main.go:8             0x49edbb                e8306cfbff                      CALL runtime.morestack_noctxt(SB)       
  main.go:12            0x49ee65                e84692faff              CALL time.Sleep(SB)                     
  main.go:13            0x49ee7c                e8df66f6ff              CALL runtime.chanrecv1(SB)              
  main.go:11            0x49ee8b                e8606bfbff              CALL runtime.morestack_noctxt(SB)

這裏就是用 selectnbsend 函數實現了 select 語句,而後繼續試驗,得出結論以下:

  • 若是select語句中只有一個 case在等待從channel中接收數據,則調用 selectnbrecv實現
  • 若是select語句中只有一個 case在等待向channel發送數據,則調用 selectnbsend實現
  • 若是select語句中有多個case,在等待向一個或多個channel發送或接收數據,則調用 selectgo 實現

好了,咱們開始從 selectgo 開始跟蹤了,可是跟蹤selectgo以前,咱們須要選跟蹤一下 reflect_rselect , 否則看着 selectgo 函數的參數,徹底就是一臉懵逼啊

2.2.2. reflect_rselect

func reflect_rselect(cases []runtimeSelect) (int, bool) {
    // 若是沒有case的select,休眠當前goroutine
    if len(cases) == 0 {
        block()
    }
    sel := make([]scase, len(cases))
    order := make([]uint16, 2*len(cases))
    for i := range cases {
        rc := &cases[i]
        switch rc.dir {
        case selectDefault:
            sel[i] = scase{kind: caseDefault}
        case selectSend:
            // 若是是發送的話,c <- 1, rc.val 就是1的地址
            sel[i] = scase{kind: caseSend, c: rc.ch, elem: rc.val}
        case selectRecv:
            // 若是是接收的話,v:= <- c, rc.val 就是v的地址
            sel[i] = scase{kind: caseRecv, c: rc.ch, elem: rc.val}
        }
    }
    return selectgo(&sel[0], &order[0], len(cases))
}

2.2.3. selectgo

func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
    cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
    order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))
    // order是 2*ncases長度的slice,而後把 order[0-ncases] 給 pollorder用,order[ncases-2ncases] 給lockorder用
    scases := cas1[:ncases:ncases]
    pollorder := order1[:ncases:ncases]
    lockorder := order1[ncases:][:ncases:ncases]

    // Replace send/receive cases involving nil channels with
    // caseNil so logic below can assume non-nil channel.
    for i := range scases {
        cas := &scases[i]
        if cas.c == nil && cas.kind != caseDefault {
            *cas = scase{}
        }
    }

    // The compiler rewrites selects that statically have
    // only 0 or 1 cases plus default into simpler constructs.
    // The only way we can end up with such small sel.ncase
    // values here is for a larger select in which most channels
    // have been nilled out. The general code handles those
    // cases correctly, and they are rare enough not to bother
    // optimizing (and needing to test).

    // generate permuted order
    // 肯定輪詢的順序
    for i := 1; i < ncases; i++ {
        j := fastrandn(uint32(i + 1))
        pollorder[i] = pollorder[j]
        pollorder[j] = uint16(i)
    }

    // sort the cases by Hchan address to get the locking order.
    // simple heap sort, to guarantee n log n time and constant stack footprint.
    // 經過hchan的地址來肯定加鎖順序,使用堆排序減小時間複雜度
    for i := 0; i < ncases; i++ {
        j := i
        // Start with the pollorder to permute cases on the same channel.
        c := scases[pollorder[i]].c
        for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() {
            k := (j - 1) / 2
            lockorder[j] = lockorder[k]
            j = k
        }
        lockorder[j] = pollorder[i]
    }
    for i := ncases - 1; i >= 0; i-- {
        o := lockorder[i]
        c := scases[o].c
        lockorder[i] = lockorder[0]
        j := 0
        for {
            k := j*2 + 1
            if k >= i {
                break
            }
            if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() {
                k++
            }
            if c.sortkey() < scases[lockorder[k]].c.sortkey() {
                lockorder[j] = lockorder[k]
                j = k
                continue
            }
            break
        }
        lockorder[j] = o
    }

    // lock all the channels involved in the select
    // 根據上面肯定的加鎖順序 lockorder,來逐個對case進行加鎖
    sellock(scases, lockorder)

    var (
        gp     *g
        sg     *sudog
        c      *hchan
        k      *scase
        sglist *sudog
        sgnext *sudog
        qp     unsafe.Pointer
        nextp  **sudog
    )

loop:
    // pass 1 - look for something already waiting
    var dfli int
    var dfl *scase
    var casi int
    var cas *scase
    var recvOK bool
    for i := 0; i < ncases; i++ {
        // 根據pollorder,獲取當前輪詢到的case
        casi = int(pollorder[i])
        cas = &scases[casi]
        c = cas.c

        switch cas.kind {
        // nil類型的case,無視,繼續下一個
        case caseNil:
            continue

        case caseRecv:
            // recv類型的case,判斷sendq的隊列中有沒有等待發送數據的sudog,若是獲取到的話,跳轉到 recv
            sg = c.sendq.dequeue()
            if sg != nil {
                goto recv
            }
            // 沒有sudog在sendq隊列排隊,而後檢查buf裏面是否有數據,若是buf裏有,則跳轉到bufrecv
            if c.qcount > 0 {
                goto bufrecv
            }
            // 最後 sendq buf都拿不到數據,則判斷這個channel是否爲關閉狀態了
            // 因此 能夠看出來,若是咱們關閉一個帶buf的channel,在關閉以後仍是能把以前存儲的數據讀完的
            if c.closed != 0 {
                goto rclose
            }

        case caseSend:
            // send 類型的case,首先確認channel是否關閉
            if c.closed != 0 {
                goto sclose
            }
            // 而後判斷,recvq隊列裏面有沒有等待接收數據的sudog,有則跳轉到 send 標籤
            sg = c.recvq.dequeue()
            if sg != nil {
                goto send
            }
            // 判斷是否有空餘的buf位置,可讓本身把數據放上去,若是有,則跳轉到bufsend標籤
            if c.qcount < c.dataqsiz {
                goto bufsend
            }

        case caseDefault:
            // 更新並記錄 case的索引及地址
            dfli = casi
            dfl = cas
        }
    }
    // 根據 dfl 來判斷是否有 default,而且走到了
    // 在全部 case遍歷完成後,若是不須要等待,都會跳轉到相應的標籤,例如 recv bufrecv send等,若是走到這裏,說明全部的case都沒法直接獲取或發送數據,等待另外一個g的就緒
    if dfl != nil {
        selunlock(scases, lockorder)
        casi = dfli
        cas = dfl
        // 若是有default,直接執行default
        goto retc
    }

    // pass 2 - enqueue on all chans
    // 流程執行到這裏,全部的case都須要等待,且沒有default執行
    gp = getg()
    if gp.waiting != nil {
        throw("gp.waiting != nil")
    }
    nextp = &gp.waiting
    // 按照lockorder,對每一個case,建立相應的sudog並放入case對應的channel的recvq或sendq隊列
    for _, casei := range lockorder {
        casi = int(casei)
        cas = &scases[casi]
        if cas.kind == caseNil {
            continue
        }
        c = cas.c
        // 每個case獲取一個sudog,綁定到case對應的cahnnel的sendq或recvq隊列
        sg := acquireSudog()
        sg.g = gp
        sg.isSelect = true
        // No stack splits between assigning elem and enqueuing
        // sg on gp.waiting where copystack can find it.
        sg.elem = cas.elem
        sg.releasetime = 0
        if t0 != 0 {
            sg.releasetime = -1
        }
        sg.c = c
        // Construct waiting list in lock order.
        // 按照lockorder,把這些sudog,依賴sudog.waitlink串聯起來
        *nextp = sg
        nextp = &sg.waitlink

        switch cas.kind {
        case caseRecv:
            // 若是recv,放入到recvq隊列
            c.recvq.enqueue(sg)

        case caseSend:
            // 若是是send,放入到sendq隊列
            c.sendq.enqueue(sg)
        }
    }

    // wait for someone to wake us up
    // 休眠等待喚醒
    gp.param = nil
    gopark(selparkcommit, nil, waitReasonSelect, traceEvGoBlockSelect, 1)
    // 
    sellock(scases, lockorder)

    gp.selectDone = 0
    sg = (*sudog)(gp.param)
    gp.param = nil

    // pass 3 - dequeue from unsuccessful chans
    // otherwise they stack up on quiet channels
    // record the successful case, if any.
    // We singly-linked up the SudoGs in lock order.
    casi = -1
    cas = nil
    sglist = gp.waiting
    // Clear all elem before unlinking from gp.waiting.
    // 在解散waiting這個隊列前,先把數據清空,由於執行到這列,確定是由於另外一個goroutine在recv或send 某個channel,而且拿到數據致使的,因此,執行到這裏後,數據都沒用了
    for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink {
        sg1.isSelect = false
        sg1.elem = nil
        sg1.c = nil
    }
    gp.waiting = nil

    for _, casei := range lockorder {
        k = &scases[casei]
        if k.kind == caseNil {
            continue
        }
        if sglist.releasetime > 0 {
            k.releasetime = sglist.releasetime
        }
        if sg == sglist {
            // sg has already been dequeued by the G that woke us up.
            // 肯定這個sudog致使的自身被喚醒
            casi = int(casei)
            cas = k
        } else {
            // 把其餘還在等待的sudog從等待隊列中移除
            c = k.c
            if k.kind == caseSend {
                c.sendq.dequeueSudoG(sglist)
            } else {
                c.recvq.dequeueSudoG(sglist)
            }
        }
        sgnext = sglist.waitlink
        sglist.waitlink = nil
        releaseSudog(sglist)
        sglist = sgnext
    }

    if cas == nil {
        // 若是cas爲nil,說明有可能由於其餘因素被喚醒,再循環一次
        goto loop
    }

    c = cas.c
    if cas.kind == caseRecv {
        recvOK = true
    }
    selunlock(scases, lockorder)
    goto retc

bufrecv:
    // can receive from buffer
    // recv操做,並buf不爲空,從buf中獲取數據便可
    recvOK = true
    qp = chanbuf(c, c.recvx)
    if cas.elem != nil {
        typedmemmove(c.elemtype, cas.elem, qp)
    }
    typedmemclr(c.elemtype, qp)
    // 更新buf中recvx的索引
    c.recvx++
    if c.recvx == c.dataqsiz {
        c.recvx = 0
    }
    // 更新buf中數據的數量
    c.qcount--
    // 解鎖當前case
    selunlock(scases, lockorder)
    goto retc

bufsend:
    // can send to buffer
    // send操做,且buf有空餘位置存儲,把本身的數據拷貝到buf隊尾
    typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem)
    // 更新buf中sendx的索引
    c.sendx++
    if c.sendx == c.dataqsiz {
        c.sendx = 0
    }
    // 更新buf中數據的數量
    c.qcount++
    // 解鎖當前case
    selunlock(scases, lockorder)
    goto retc

recv:
    // can receive from sleeping sender (sg)
    // recv操做,可是sendq中有sudog在等待,經過recv方法,獲取數據
    recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
    recvOK = true
    goto retc

rclose:
    // read at end of closed channel
    // recv 操做,可是這個channel已經close了
    selunlock(scases, lockorder)
    recvOK = false
    if cas.elem != nil {
        typedmemclr(c.elemtype, cas.elem)
    }
    goto retc

send:
    // can send to a sleeping receiver (sg)
    // send操做,可是recvq隊列中有在等待的sudog
    send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
    goto retc

retc:
    // 返回
    return casi, recvOK

sclose:
    // send on closed channel
    selunlock(scases, lockorder)
    panic(plainError("send on closed channel"))
}

2.2.4. selectnbrecv

當一個select裏面只有一個 case,且這個case 是接收數據的操做的時候,select就會調用 selectnbrecv 函數來實現

func selectnbrecv(elem unsafe.Pointer, c *hchan) (selected bool) {
    selected, _ = chanrecv(c, elem, false)
    return
}

這裏就會發現 selectnbrecv 就是調用了 chanrecv 來實現,也就是咱們上面解析的 <- c1 是同樣的,就至關於 select 退變 成單獨的 <- c 的表達了

2.2.5. selectnbsend

selectnbrecv 同樣,當select只有一個case,且這個case是發送數據到channel的,就會退變成 c <- 1 的表達了

func selectnbsend(c *hchan, elem unsafe.Pointer) (selected bool) {
    return chansend(c, elem, false, getcallerpc())
}

2.2.6. 總結

因此,select的流程大體以下

  1. 對每一個case進行收發判斷,是否須要阻塞,不須要,直接跳轉執行
  2. 若是每一個case的收發操做都須要阻塞等待,則判斷有沒有default,若是有,執行default
  3. 若是每一個case的收發操做都須要阻塞等待,且沒有default,那就爲每一個case建立一個sudog,綁定到case對應的channel的sendq或recvq隊列
  4. 若是某個sudog被臨幸,而後被喚醒了,清空全部sudog的數據等屬性,並把其餘的sudog從隊列中移除
  5. 至此,一個select操做結束

3. 總結

我仍是很像吐槽一下,selectgo 函數華麗麗的寫了300多行,裏面還使用了若干的 goto 去進行跳轉,真的不能夠分拆一下嗎,不過大神的代碼,仍是真的須要膜拜的

4. 參考文檔

相關文章
相關標籤/搜索