3Delight是應用於高端電影級別渲染的軟件渲染器,迄今爲止已經參與了無數的電影製做,具體能夠參見連接。html
若是你對3Delight的印象就依然是RenderMan的替代品,那就顯然已經和時代發展脫節了。如今的3Delight是一個徹底PBR Unbiased的渲染器,並且徹底爲了交互式渲染以及雲端渲染設計,因此你對它的固有印象能夠從看到這篇文章開始完全改變了。git
渲染=數據操做github
其實「渲染」這個動做的自己,就是數據處理,你能夠用任何流行的思路來對照,好比MapReduce。可是歸根結底,能夠認爲只有3個概念。數組
這3個概念能夠直接展開,把你所知道全部的計算機圖形學相關的概念和技術都丟入,可是這裏不展開。ide
本文會結合這3個概念,來仔細的闡述3Delight NSI的優勢和思路,以及解決的問題。函數
計算機,實際上是過程性設備。所謂面向對象,只是軟件設計領域的一個對過程和數據的合併抽象而已,本質上,最後的「執行」這個自己依然是個過程。性能
那麼回顧一下RenderMan API(如下簡稱RI)的設計。ui
一個完整RI可渲染的場景通常結構以下,來自這裏。lua
1 ##RenderMan RIB-Structure 1.1 2 ##Scene Bouncing Ball 3 ##Creator /usr/ucb/vi 4 ##CreationDate 12:30pm 8/24/89 5 ##For RenderMan Jones 6 ##Frames 2 7 ##Shaders PIXARmarble, PIXARwood, MyUserShader 8 ##CapabilitiesNeeded ShadingLanguage Displacements 9 version 3.03 10 Declare "d" "uniform point" 11 Declare "squish" "uniform float" 12 Option "limits" "bucketsize" [6 6] #renderer specific 13 Option "limits" "gridsize" [18] #renderer specific 14 Format 1024 768 1 #mandatory resolution 15 Projection "perspective" 16 Clipping 10 1000.0 17 FrameBegin 1 18 ##Shaders MyUserShader, PIXARmarble, PIXARwood 19 ##CameraOrientation 10.0 10.0 10.0 0.0 0.0 0.0 20 Transform [.707107 -.408248 -.57735 0 21 0 .816497 -.57735 0 22 -.707107 -.408248 -.57735 0 23 0 0 17.3205 1 ] 24 WorldBegin 25 AttributeBegin 26 Attribute "identifier" "name" "myball" 27 Displacement "MyUserShader" "squish" 5 28 AttributeBegin 29 Attribute "identifier" "shadinggroup" ["tophalf"] 30 Surface "PIXARmarble" 31 Sphere .5 0 .5 360 32 AttributeEnd 33 AttributeBegin 34 Attribute "identifier" "shadinggroup" ["bothalf"] 35 Surface "plastic" 36 Sphere .5 -.5 0. 360 37 AttributeEnd 38 AttributeEnd 39 AttributeBegin 40 Attribute "identifier" "name" ["floor"] 41 Surface "PIXARwood" "roughness" [.3] "d" [1] 42 # geometry for floor 43 Polygon "P" [-100. 0. -100. -100. 0. 100. 100. 0. 100. 10.0 0. -100.] 44 AttributeEnd 45 WorldEnd 46 FrameEnd 47 FrameBegin 2 48 ##Shaders PIXARwood, PIXARmarble 49 ##CameraOrientation 10.0 20.0 10.0 0.0 0.0 0.0 50 Transform [.707107 -.57735 -.408248 0 51 0 .57735 52 -.815447 0 53 -.707107 -.57735 -.408248 0 54 0 0 24.4949 1 ] 55 WorldBegin 56 AttributeBegin 57 Attribute "identifier" "name" ["myball"] 58 AttributeBegin 59 Attribute "identifier" "shadinggroup" ["tophalf"] 60 Surface "PIXARmarble" 61 ShadingRate .1 62 Sphere .5 0 .5 360 63 AttributeEnd 64 AttributeBegin 65 Attribute "identifier" "shadinggroup" ["bothalf"] 66 Surface "plastic" 67 Sphere .5 -.5 0 360 68 AttributeEnd 69 AttributeEnd 70 AttributeBegin 71 Attribute "identifier" "name" ["floor"] 72 Surface "PIXARwood" "roughness" [.3] "d" [1] 73 # geometry for floor 74 AttributeEnd 75 WorldEnd 76 FrameEnd
聰明的你告訴我,你以爲這個場景描述有什麼限制?這個問題可能很難回答,可是咱們先來提幾個看似簡單的需求。spa
可是告訴我,若是你想修改這個Mesh的幾何數據,你會如何作?這個答案在RI內,使用負責場景數據,範例以下。
1 RiEditBegin("attribute", "string editlights", "light1", RI_NULL); 2 // specify the coordinate system for light1 3 RiTransform( ... ); 4 RiLightsource( "spotlight", RI_HANDLEID, "light1", "color lightcolor", (RtPointer)&color ); 5 RiEditEnd();
這套系統只支持很是有限的場景元素的修改,也就是你只能改改Shader參數,移動一下位置如此,也就是咱們如今看到常見IPR的全部的操做。
固然這一套系統的限制呢,也是寫的明明白白。
Restrictions, Constraints, and Known Issues
Each re-rendering mode has certain restrictions and limitations that should be considered before being incorporated in a production pipeline. It is our intent to address these in future releases. Below is the current list of restrictions, constraints, and known issues:
- Hider restrictions The only hiders supported are stochastic and raytrace. Sigma buffer and stitching are not supported.
- Camera restrictions Multi-camera rendering is not supported.
- Graphics primitives CSG is not supported.
- Display Progressive refinement is critical to making editing interactive. We have provided a new display driver, multires, that can quickly display the multi-resolution images produced by re-rendering. However, existing display drivers can't display multi-resolution images and will cause the re-renderer to disable progressive refinement, rendering only at the highest resolution.
- Resizable Arrays Traditional shaders with resizeable arrays will not be baked properly, leading to a crash during re-rendering. However, shader object-based shaders do support the use of resizeable arrays.
限制有
那麼顯然,這一套系統的缺陷是
顯然到了現在,再遵循RenderMan標準,顯然已經沒有意義。現在RenderMan渲染器自己就沒有絲毫優點,你們的渲染已經更多,已經不是當年那個缺乏靠譜的解決方案的時代了。因此,爲了克服RenderMan的全部缺點和限制,3Delight從新引入了NSI這麼一套API。下面是全部函數列表,對,你沒有看錯,全部的函數。
NSIContext_t NSIBegin(int nparams, const struct NSIParam_t *params ); void NSIEnd( NSIContext_t ctx ); void NSICreate(NSIContext_t ctx, NSIHandle_t handle, const char *type, int nparams, const struct NSIParam_t *params ); void NSIDelete(NSIContext_t ctx, NSIHandle_t handle, int nparams, const struct NSIParam_t *params); void NSISetAttribute(NSIContext_t ctx, NSIHandle_t object, int nparams, const struct NSIParam_t *params ); void NSISetAttributeAtTime(NSIContext_t ctx, NSIHandle_t object, double time, int nparams, const struct NSIParam_t *params ); void NSIDeleteAttribute(NSIContext_t ctx, NSIHandle_t object, const char *name ); void NSIConnect(NSIContext_t ctx, NSIHandle_t from, const char *from_attr, NSIHandle_t to, const char *to_attr, int nparams, const struct NSIParam_t *params ); void NSIDisconnect(NSIContext_t ctx, NSIHandle_t from, const char *from_attr, NSIHandle_t to, const char *to_attr); void NSIEvaluate(NSIContext_t ctx, int nparams, const struct NSIParam_t *params); void NSIRenderControl(NSIContext_t ctx, int nparams, const struct NSIParam_t *params);
以上就是全部的函數。
其實從函數名字就能夠看到背後的設計思路,雖然仍是填充場景對象的數據,可是因爲這個不存在任何的依賴關係,因此克服了RI的那幾個重要的缺點,一切的一切只要在調用NSIRenderControl以前便可。用戶能夠用這一套API以本身喜歡的順序組織場景,構造節點和節點之間的鏈接便可。下面來具體用例子解釋如何構造場景。
首先從構造一個Plane的片斷開始。
1 #include <nsi.hpp> 2 3 4 // Set mesh data. 5 // 6 int plane_shape_nvertices_data[1] = 7 { 8 4 9 }; 10 11 int plane_shape_indices_data[4] = 12 { 13 0, 1, 3, 2 14 }; 15 16 float plane_shape_P_data[12] = // 3 * 4 17 { 18 -50, 0, 50, 19 50, 0, 50, 20 - 50, 0, - 50, 21 50, 0, - 50 22 }; 23 24 int plane_shape_N_data[12] = // 3 * 4 25 { 26 0, 1, 0, 27 0, 1, 0, 28 0, 1, 0, 29 0, 1, 0 30 }; 31 32 NSI::ArgumentList plane_shape_attrs; 33 34 plane_shape_attrs.push(NSI::Argument::New("nvertices") 35 ->SetType(NSITypeInteger) 36 ->SetCount(1) 37 ->SetValuePointer(plane_shape_nvertices_data)); 38 39 plane_shape_attrs.push(NSI::Argument::New("P") 40 ->SetType(NSITypePoint) 41 ->SetCount(4) 42 ->SetFlags(NSIParamInterpolateLinear) 43 ->SetValuePointer(plane_shape_P_data)); 44 45 plane_shape_attrs.push(NSI::Argument::New("P.indices") 46 ->SetType(NSITypeInteger) 47 ->SetCount(4) 48 ->SetValuePointer(plane_shape_indices_data)); 49 50 plane_shape_attrs.push(NSI::Argument::New("N") 51 ->SetType(NSITypeNormal) 52 ->SetCount(4) 53 ->SetFlags(NSIParamInterpolateLinear) 54 ->SetValuePointer(plane_shape_N_data)); 55 56 plane_shape_attrs.push(NSI::Argument::New("N.indices") 57 ->SetType(NSITypeInteger) 58 ->SetCount(4) 59 ->SetValuePointer(plane_shape_indices_data)); 60 61 nsi.SetAttribute(plane_shape_handle, plane_shape_attrs);
對於一個mesh來講,它具有以下幾個內置的屬性
顧名思義,這些屬性定義了這個mesh的全部幾何數據,每個屬性的數據就是一個數組,如同範例C++代碼所展現的同樣。
光有mesh固然不行,還須要transform
1 #include <nsi.hpp> 2 3 // Set transform data, which is identity. 4 // 5 double plane_xform_matrix_data[16] = 6 { 7 1, 0, 0, 0, 8 0, 1, 0, 0, 9 0, 0, 1, 0, 10 0, 0, 0, 1 11 }; 12 13 NSI::ArgumentList plane_xform_attrs; 14 plane_xform_attrs.push(NSI::Argument::New("transformationmatrix") 15 ->SetType(NSITypeDoubleMatrix) 16 ->SetCount(1) 17 ->SetValuePointer(plane_xform_matrix_data)); 18 19 nsi.SetAttributeAtTime(plane_xform_handle, 0.0, plane_xform_attrs); 20 21 // Create plane's mesh and connect it to the last transform. 22 // 23 const std::string plane_shape_handle("planeShape1"); 24 25 nsi.Create(plane_shape_handle, "mesh"); 26 nsi.Connect(plane_shape_handle, "", plane_xform_handle, "objects");
其實很是簡單,這裏使用了SetAttributeAtTime,用來定義多個matrix實現運動模糊。末了,直接調用Connect,這樣就把先前構造的mesh放入了transform的objects這個屬性之下,今後這個mesh能夠被transform所變換。固然transform是能夠包含transform,構形成了層次化的變換。
下面固然是須要附上材質了,咱們就用最簡單的lambert。
1 #include <nsi.hpp> 2 3 // Assign lambert shader to the plane. 4 // 5 const std::string plane_xform_attrs_handle = plane_xform_handle + "Attrs"; 6 7 nsi.Create(plane_xform_attrs_handle, "attributes"); 8 nsi.Connect(plane_xform_attrs_handle, "", plane_xform_handle, "geometryattributes"); 9 10 const std::string lambert_shader_handle("lambert1"); 11 12 nsi.Create(lambert_shader_handle, "shader"); 13 14 char lambert_shader_name[256]; 15 sprintf(lambert_shader_name, "%s/maya/osl/lambert", delight_dir); 16 17 nsi.SetAttribute(lambert_shader_handle, (NSI::StringArg("shaderfilename", lambert_shader_name), 18 NSI::FloatArg("i_diffuse", 0.8))); 19 20 nsi.Connect(lambert_shader_handle, "", plane_xform_attrs_handle, "surfaceshader");
這裏須要先構造attributes,而後把這個attributes和以前創造的transform節點的geometryattributes鏈接,這樣全部attributes都會被全部transform的objects所繼承,今後那個mesh就會附上了這個lambert材質。固然此shader實例能夠用一樣的方式共享給其餘的幾何體。
還有更多的代碼能夠從nsi-example這個開源項目看到完整的源代碼。
感興趣的用戶能夠直接到3Delight Download下載試用版體驗最新3Delight,體驗其卓越的性能和全部功能特點。