1:概念:時間複雜度是總運算次數表達式中受n的變化影響最大的那一項(不含係數)算法
5*n^5+10000000的時間複雜度是n^5
數組
2:計算方法:時間複雜度就是一個算法中的語句執行次數最多的一個。函數
:若是一個問題的規模是n,解這一問題的某一算法所須要的時間爲T(n),它是n的某一函數 T(n)稱爲這一算法的「時間複雜性」。 當輸入量n逐漸加大時,時間複雜性的極限情形稱爲算法的「漸近時間複雜性」。 咱們經常使用大O表示法表示時間複雜性,注意它是某一個算法的時間複雜性。大O表示只是說有上界,由定義若是f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並非上確界,但人們在表示的時候通常都習慣表示前者。 此外,一個問題自己也有它的複雜性,若是某個算法的複雜性到達了這個問題複雜性的下界,那就稱這樣的算法是最佳算法。 「大O記法」:在這種描述中使用的基本參數是 n,即問題實例的規模,把複雜性或運行時間表達爲n的函數。這裏的「O」表示量級 (order),好比說「二分檢索是 O(logn)的」,也就是說它須要「經過logn量級的步驟去檢索一個規模爲n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增加。 這種漸進估計對算法的理論分析和大體比較是很是有價值的,但在實踐中細節也可能形成差別。例如,一個低附加代價的O(n2)算法在n較小的狀況下可能比一個高附加代價的 O(nlogn)算法運行得更快。固然,隨着n足夠大之後,具備較慢上升函數的算法必然工做得更快。 O(1) Temp=i;i=j;j=temp; 以上三條單個語句的頻度均爲1,該程序段的執行時間是一個與問題規模n無關的常數。算法的時間複雜度爲常數階,記做T(n)=O(1)。若是算法的執行時間不隨着問題規模n的增長而增加,即便算法中有上千條語句,其執行時間也不過是一個較大的常數。此類算法的時間複雜度是O(1)。 O(n^2)2.1. 交換i和j的內容 sum=0; (一次) for(i=1;i<=n;i++) (n次 ) for(j=1;j<=n;j++) (n^2次 ) sum++; (n^2次 )解:T(n)=2n^2+n+1 =O(n^2)2.2. for (i=1;i<n;i++) { y=y+1; ① for (j=0;j<=(2*n);j++) x++; ② } 解: 語句1的頻度是n-1 語句2的頻度是(n-1)*(2n+1)=2n^2-n-1 f(n)=2n^2-n-1+(n-1)=2n^2-2 該程序的時間複雜度T(n)=O(n^2). O(n) 2.3. a=0; b=1; |