JS基礎算法總結

排序算法說明

(1)排序的定義:對一序列對象根據某個關鍵字進行排序;html

輸入:n個數:a1,a2,a3,…,an
輸出:n個數的排列:a1’,a2’,a3’,…,an’,使得a1’<=a2’<=a3’<=…<=an’。git

再講的形象點就是排排坐,調座位,高的站在後面,矮的站在前面咯。github

(3)對於評述算法優劣術語的說明算法

穩定:若是a本來在b前面,而a=b,排序以後a仍然在b的前面;
不穩定:若是a本來在b的前面,而a=b,排序以後a可能會出如今b的後面;sql

內排序:全部排序操做都在內存中完成;
外排序:因爲數據太大,所以把數據放在磁盤中,而排序經過磁盤和內存的數據傳輸才能進行;shell

時間複雜度: 一個算法執行所耗費的時間。
空間複雜度: 運行完一個程序所需內存的大小。api

關於時間空間複雜度的更多瞭解請戳這裏,或是看書程傑大大編寫的《大話數據結構》仍是很讚的,通俗易懂。數組

(4)排序算法圖片總結(圖片來源於網絡):網絡

排序對比:數據結構

這裏寫圖片描述

圖片名詞解釋:
n: 數據規模
k:「桶」的個數
In-place: 佔用常數內存,不佔用額外內存
Out-place: 佔用額外內存

排序分類:

這裏寫圖片描述

1.冒泡排序(Bubble Sort)

好的,開始總結第一個排序算法,冒泡排序。我想對於它每一個學過C語言的都會了解的吧,這多是不少人接觸的第一個排序算法。

(1)算法描述

冒泡排序是一種簡單的排序算法。它重複地走訪過要排序的數列,一次比較兩個元素,若是它們的順序錯誤就把它們交換過來。走訪數列的工做是重複地進行直到沒有再須要交換,也就是說該數列已經排序完成。這個算法的名字由來是由於越小的元素會經由交換慢慢「浮」到數列的頂端。

(2)算法描述和實現

具體算法描述以下:

<1>.比較相鄰的元素。若是第一個比第二個大,就交換它們兩個; <2>.對每一對相鄰元素做一樣的工做,從開始第一對到結尾的最後一對,這樣在最後的元素應該會是最大的數; <3>.針對全部的元素重複以上的步驟,除了最後一個; <4>.重複步驟1~3,直到排序完成。

JavaScript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function bubbleSort(arr) {
     var len = arr.length;
     for (var i = 0; i < len; i++) {
         for (var j = 0; j < len - 1 - i; j++) {
             if (arr[j] > arr[j+1]) {        //相鄰元素兩兩對比
                 var temp = arr[j+1];        //元素交換
                 arr[j+1] = arr[j];
                 arr[j] = temp ;
             }
         }
     }
     return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

改進冒泡排序: 設置一標誌性變量pos,用於記錄每趟排序中最後一次進行交換的位置。因爲pos位置以後的記錄均已交換到位,故在進行下一趟排序時只要掃描到pos位置便可。

改進後算法以下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function bubbleSort2(arr) {
     console. time ( '改進後冒泡排序耗時' );
     var i = arr.length-1;  //初始時,最後位置保持不變
     while ( i> 0) {
         var pos= 0; //每趟開始時,無記錄交換
         for (var j= 0; j< i; j++)
             if (arr[j]> arr[j+1]) {
                 pos= j; //記錄交換的位置
                 var tmp = arr[j]; arr[j]=arr[j+1];arr[j+1]=tmp;
             }
         i= pos; //爲下一趟排序做準備
      }
      console.timeEnd( '改進後冒泡排序耗時' );
      return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort2(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

傳統冒泡排序中每一趟排序操做只能找到一個最大值或最小值,咱們考慮利用在每趟排序中進行正向和反向兩遍冒泡的方法一次能夠獲得兩個最終值(最大者和最小者) , 從而使排序趟數幾乎減小了一半。

改進後的算法實現爲:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
function bubbleSort3(arr3) {
     var low = 0;
     var high= arr.length-1; //設置變量的初始值
     var tmp,j;
     console. time ( '2.改進後冒泡排序耗時' );
     while (low < high) {
         for (j= low; j< high; ++j) //正向冒泡,找到最大者
             if (arr[j]> arr[j+1]) {
                 tmp = arr[j]; arr[j]=arr[j+1];arr[j+1]=tmp;
             }
         --high;                 //修改high值, 前移一位
         for (j=high; j>low; --j) //反向冒泡,找到最小者
             if (arr[j]<arr[j-1]) arr= "[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];" pre= "" return = "" tmp= "arr[j];" var= "" >

三種方法耗時對比:

這裏寫圖片描述

由圖能夠看出改進後的冒泡排序明顯的時間複雜度更低,耗時更短了。讀者自行嘗試能夠戳這,博主在github建了個庫,讀者能夠Clone下來本地嘗試。此博文配合源碼體驗更棒哦~~~

冒泡排序動圖演示:<喎�"/kf/ware/vc/" target="_blank" class="keylink">vc3Ryb25nPjwvcD4NCjxwPjxpbWcgYWx0PQ=="這裏寫圖片描述" src="/uploadfile/Collfiles/20160918/20160918092143582.gif" title="\" />

(3)算法分析

最佳狀況:T(n) = O(n)

當輸入的數據已是正序時(都已是正序了,爲毛何須還排序呢….)

最差狀況:T(n) = O(n2)

當輸入的數據是反序時(臥槽,我直接反序不就完了….)

平均狀況:T(n) = O(n2)

2.選擇排序(Selection Sort)

表現最穩定的排序算法之一(這個穩定不是指算法層面上的穩定哈,相信聰明的你能明白我說的意思2333),由於不管什麼數據進去都是O(n2)的時間複雜度…..因此用到它的時候,數據規模越小越好。惟一的好處可能就是不佔用額外的內存空間了吧。理論上講,選擇排序可能也是平時排序通常人想到的最多的排序方法了吧。

(1)算法簡介

選擇排序(Selection-sort)是一種簡單直觀的排序算法。它的工做原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,而後,再從剩餘未排序元素中繼續尋找最小(大)元素,而後放到已排序序列的末尾。以此類推,直到全部元素均排序完畢。

(2)算法描述和實現

n個記錄的直接選擇排序可通過n-1趟直接選擇排序獲得有序結果。具體算法描述以下:

<1>.初始狀態:無序區爲R[1..n],有序區爲空; <2>.第i趟排序(i=1,2,3…n-1)開始時,當前有序區和無序區分別爲R[1..i-1]和R(i..n)。該趟排序從當前無序區中-選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1..i]和R[i+1..n)分別變爲記錄個數增長1個的新有序區和記錄個數減小1個的新無序區; <3>.n-1趟結束,數組有序化了。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
function selectionSort(arr) {
     var len = arr.length;
     var minIndex, temp ;
     console. time ( '選擇排序耗時' );
     for (var i = 0; i < len - 1; i++) {
         minIndex = i;
         for (var j = i + 1; j < len; j++) {
             if (arr[j] < arr[minIndex]) {     //尋找最小的數
                 minIndex = j;                 //將最小數的索引保存
             }
         }
         temp = arr[i];
         arr[i] = arr[minIndex];
         arr[minIndex] = temp ;
     }
     console.timeEnd( '選擇排序耗時' );
     return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(selectionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

選擇排序動圖演示:

這裏寫圖片描述

(3)算法分析

最佳狀況:T(n) = O(n2) 最差狀況:T(n) = O(n2) 平均狀況:T(n) = O(n2)

3.插入排序(Insertion Sort)

插入排序的代碼實現雖然沒有冒泡排序和選擇排序那麼簡單粗暴,但它的原理應該是最容易理解的了,由於只要打過撲克牌的人都應該可以秒懂。固然,若是你說你打撲克牌摸牌的時候歷來不按牌的大小整理牌,那估計這輩子你對插入排序的算法都不會產生任何興趣了…..

(1)算法簡介

插入排序(Insertion-Sort)的算法描述是一種簡單直觀的排序算法。它的工做原理是經過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,一般採用in-place排序(即只需用到O(1)的額外空間的排序),於是在從後向前掃描過程當中,須要反覆把已排序元素逐步向後挪位,爲最新元素提供插入空間。

(2)算法描述和實現

通常來講,插入排序都採用in-place在數組上實現。具體算法描述以下:

<1>.從第一個元素開始,該元素能夠認爲已經被排序; <2>.取出下一個元素,在已經排序的元素序列中從後向前掃描; <3>.若是該元素(已排序)大於新元素,將該元素移到下一位置; <4>.重複步驟3,直到找到已排序的元素小於或者等於新元素的位置; <5>.將新元素插入到該位置後; <6>.重複步驟2~5。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
function insertionSort(array) {
     if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' ) {
         console. time ( '插入排序耗時:' );
         for (var i = 1; i < array.length; i++) {
             var key = array[i];
             var j = i - 1;
             while (j >= 0 && array[j] > key ) {
                 array[j + 1] = array[j];
                 j --;
             }
             array[j + 1] = key ;
         }
         console.timeEnd( '插入排序耗時:' );
         return array;
     } else {
         return 'array is not an Array!' ;
     }
}

改進插入排序: 查找插入位置時使用二分查找的方式

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
function binaryInsertionSort(array) {
     if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' ) {
         console. time ( '二分插入排序耗時:' );
 
         for (var i = 1; i < array.length; i++) {
             var key = array[i], left = 0, right = i - 1;
             while ( left <= right ) {
                 var middle = parseInt(( left + right ) / 2);
                 if ( key < array[middle]) {
                     right = middle - 1;
                 } else {
                     left = middle + 1;
                 }
             }
             for (var j = i - 1; j >= left ; j --) {
                 array[j + 1] = array[j];
             }
             array[ left ] = key ;
         }
         console.timeEnd( '二分插入排序耗時:' );
 
         return array;
     } else {
         return 'array is not an Array!' ;
     }
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(binaryInsertionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

改進先後對比:

這裏寫圖片描述

插入排序動圖演示:

這裏寫圖片描述

(3)算法分析

最佳狀況:輸入數組按升序排列。T(n) = O(n) 最壞狀況:輸入數組按降序排列。T(n) = O(n2) 平均狀況:T(n) = O(n2)

4.希爾排序(Shell Sort)

1959年Shell發明; 第一個突破O(n^2)的排序算法;是簡單插入排序的改進版;它與插入排序的不一樣之處在於,它會優先比較距離較遠的元素。希爾排序又叫縮小增量排序

(1)算法簡介

希爾排序的核心在於間隔序列的設定。既能夠提早設定好間隔序列,也能夠動態的定義間隔序列。動態定義間隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。

(2)算法描述和實現

先將整個待排序的記錄序列分割成爲若干子序列分別進行直接插入排序,具體算法描述:

<1>. 選擇一個增量序列t1,t2,…,tk,其中ti>tj,tk=1; <2>.按增量序列個數k,對序列進行k 趟排序; <3>.每趟排序,根據對應的增量ti,將待排序列分割成若干長度爲m 的子序列,分別對各子表進行直接插入排序。僅增量因子爲1 時,整個序列做爲一個表來處理,表長度即爲整個序列的長度。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function shellSort(arr) {
     var len = arr.length,
         temp ,
         gap = 1;
     console. time ( '希爾排序耗時:' );
     while(gap < len/5) {          //動態定義間隔序列
         gap =gap*5+1;
     }
     for (gap; gap > 0; gap = Math.floor(gap/5)) {
         for (var i = gap; i < len; i++) {
             temp = arr[i];
             for (var j = i-gap; j >= 0 && arr[j] > temp ; j-=gap) {
                 arr[j+gap] = arr[j];
             }
             arr[j+gap] = temp ;
         }
     }
     console.timeEnd( '希爾排序耗時:' );
     return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(shellSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

希爾排序圖示(圖片來源網絡):

這裏寫圖片描述

(3)算法分析

最佳狀況:T(n) = O(nlog2 n) 最壞狀況:T(n) = O(nlog2 n) 平均狀況:T(n) =O(nlog n)

5.歸併排序(Merge Sort)

和選擇排序同樣,歸併排序的性能不受輸入數據的影響,但表現比選擇排序好的多,由於始終都是O(n log n)的時間複雜度。代價是須要額外的內存空間。

(1)算法簡介

 歸併排序是創建在歸併操做上的一種有效的排序算法。該算法是採用分治法(Divide and Conquer)的一個很是典型的應用。歸併排序是一種穩定的排序方法。將已有序的子序列合併,獲得徹底有序的序列;即先使每一個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱爲2-路歸併。

(2)算法描述和實現

具體算法描述以下:

<1>.把長度爲n的輸入序列分紅兩個長度爲n/2的子序列; <2>.對這兩個子序列分別採用歸併排序; <3>.將兩個排序好的子序列合併成一個最終的排序序列。

Javscript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function mergeSort(arr) {  //採用自上而下的遞歸方法
     var len = arr.length;
     if(len < 2) {
         return arr;
     }
     var middle = Math.floor(len / 2),
         left = arr.slice(0, middle),
         right = arr.slice(middle);
     return merge(mergeSort( left ), mergeSort( right ));
}
 
function merge( left , right )
{
     var result = [];
     console. time ( '歸併排序耗時' );
     while ( left .length && right .length) {
         if ( left [0] <= right [0]) {
             result.push( left .shift());
         } else {
             result.push( right .shift());
         }
     }
 
     while ( left .length)
         result.push( left .shift());
 
     while ( right .length)
         result.push( right .shift());
     console.timeEnd( '歸併排序耗時' );
     return result;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(mergeSort(arr));

歸併排序動圖演示:

這裏寫圖片描述

(3)算法分析

最佳狀況:T(n) = O(n) 最差狀況:T(n) = O(nlogn) 平均狀況:T(n) = O(nlogn)

6.快速排序(Quick Sort)

快速排序的名字起的是簡單粗暴,由於一聽到這個名字你就知道它存在的意義,就是快,並且效率高! 它是處理大數據最快的排序算法之一了。

(1)算法簡介

快速排序的基本思想:經過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另外一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

(2)算法描述和實現

快速排序使用分治法來把一個串(list)分爲兩個子串(sub-lists)。具體算法描述以下:

<1>.從數列中挑出一個元素,稱爲 「基準」(pivot); <2>.從新排序數列,全部元素比基準值小的擺放在基準前面,全部元素比基準值大的擺在基準的後面(相同的數能夠到任一邊)。在這個分區退出以後,該基準就處於數列的中間位置。這個稱爲分區(partition)操做; <3>.遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*方法說明:快速排序
@param  array 待排序數組*/
//方法一
function quickSort(array, left , right ) {
     console. time ( '1.快速排序耗時' );
     if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number' ) {
         if ( left < right ) {
             var x = array[ right ], i = left - 1, temp ;
             for (var j = left ; j <= right ; j++) {
                 if (array[j] <= x) {
                     i++;
                     temp = array[i];
                     array[i] = array[j];
                     array[j] = temp ;
                 }
             }
             quickSort(array, left , i - 1);
             quickSort(array, i + 1, right );
         }
         console.timeEnd( '1.快速排序耗時' );
         return array;
     } else {
         return 'array is not an Array or left or right is not a number!' ;
     }
}
 
//方法二
var quickSort2 = function (arr) {
     console. time ( '2.快速排序耗時' );
  if (arr.length <= 1) { return arr; }
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];
  var left = [];
  var right = [];
   for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
       left .push(arr[i]);
    } else {
       right .push(arr[i]);
    }
  }
console.timeEnd( '2.快速排序耗時' );
   return quickSort2( left ).concat([pivot], quickSort2( right ));
};
 
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(quickSort(arr,0,arr.length-1));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
console.log(quickSort2(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

快速排序動圖演示:

快速排序

(3)算法分析

最佳狀況:T(n) = O(nlogn) 最差狀況:T(n) = O(n2) 平均狀況:T(n) = O(nlogn)

7.堆排序(Heap Sort)

堆排序能夠說是一種利用堆的概念來排序的選擇排序。

(1)算法簡介

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似徹底二叉樹的結構,並同時知足堆積的性質:即子結點的鍵值或索引老是小於(或者大於)它的父節點。

(2)算法描述和實現

具體算法描述以下:

<1>.將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆爲初始的無序區; <2>.將堆頂元素R[1]與最後一個元素R[n]交換,此時獲得新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且知足R[1,2…n-1]<=R[n]; <3>.因爲交換後新的堆頂R[1]可能違反堆的性質,所以須要對當前無序區(R1,R2,……Rn-1)調整爲新堆,而後再次將R[1]與無序區最後一個元素交換,獲得新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重複此過程直到有序區的元素個數爲n-1,則整個排序過程完成。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/*方法說明:堆排序
@param  array 待排序數組*/
function heapSort(array) {
     console. time ( '堆排序耗時' );
     if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' ) {
         //建堆
         var heapSize = array.length, temp ;
         for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i --) {
             heapify(array, i, heapSize);
         }
 
         //堆排序
         for (var j = heapSize - 1; j >= 1; j --) {
             temp = array[0];
             array[0] = array[j];
             array[j] = temp ;
             heapify(array, 0, --heapSize);
         }
         console.timeEnd( '堆排序耗時' );
         return array;
     } else {
         return 'array is not an Array!' ;
     }
}
/*方法說明:維護堆的性質
@param  arr 數組
@param  x   數組下標
@param  len 堆大小*/
function heapify(arr, x, len) {
     if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number' ) {
         var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp ;
         if (l < len && arr[l] > arr[largest]) {
             largest = l;
         }
         if (r < len && arr[r] > arr[largest]) {
             largest = r;
         }
         if (largest != x) {
             temp = arr[x];
             arr[x] = arr[largest];
             arr[largest] = temp ;
             heapify(arr, largest, len);
         }
     } else {
         return 'arr is not an Array or x is not a number!' ;
     }
}
var arr=[91,60,96,13,35,65,46,65,10,30,20,31,77,81,22];
console.log(heapSort(arr));//[10, 13, 20, 22, 30, 31, 35, 46, 60, 65, 65, 77, 81, 91, 96]

堆排序動圖演示:

這裏寫圖片描述

(3)算法分析

最佳狀況:T(n) = O(nlogn) 最差狀況:T(n) = O(nlogn) 平均狀況:T(n) = O(nlogn)

8.計數排序(Counting Sort)

計數排序的核心在於將輸入的數據值轉化爲鍵存儲在額外開闢的數組空間中。 做爲一種線性時間複雜度的排序,計數排序要求輸入的數據必須是有肯定範圍的整數。

(1)算法簡介

計數排序(Counting sort)是一種穩定的排序算法。計數排序使用一個額外的數組C,其中第i個元素是待排序數組A中值等於i的元素的個數。而後根據數組C來將A中的元素排到正確的位置。它只能對整數進行排序。

(2)算法描述和實現

具體算法描述以下:

<1>. 找出待排序的數組中最大和最小的元素; <2>. 統計數組中每一個值爲i的元素出現的次數,存入數組C的第i項; <3>. 對全部的計數累加(從C中的第一個元素開始,每一項和前一項相加); <4>. 反向填充目標數組:將每一個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function countingSort(array) {
     var len = array.length,
         B = [],
         C = [],
         min = max = array[0];
     console. time ( '計數排序耗時' );
     for (var i = 0; i < len; i++) {
         min = min <= array[i] ? min : array[i];
         max = max >= array[i] ? max : array[i];
         C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;
     }
     for (var j = min ; j < max ; j++) {
         C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
     }
     for (var k = len - 1; k >= 0; k --) {
         B[C[array[k]] - 1] = array[k];
         C[array[k]] --;
     }
     console.timeEnd( '計數排序耗時' );
     return B;
}
var arr = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log(countingSort(arr)); //[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]

JavaScript動圖演示:

這裏寫圖片描述

(3)算法分析

當輸入的元素是n 個0到k之間的整數時,它的運行時間是 O(n + k)。計數排序不是比較排序,排序的速度快於任何比較排序算法。因爲用來計數的數組C的長度取決於待排序數組中數據的範圍(等於待排序數組的最大值與最小值的差加上1),這使得計數排序對於數據範圍很大的數組,須要大量時間和內存。

最佳狀況:T(n) = O(n+k) 最差狀況:T(n) = O(n+k) 平均狀況:T(n) = O(n+k)

9.桶排序(Bucket Sort)

桶排序是計數排序的升級版。它利用了函數的映射關係,高效與否的關鍵就在於這個映射函數的肯定。

(1)算法簡介

桶排序 (Bucket sort)的工做的原理:假設輸入數據服從均勻分佈,將數據分到有限數量的桶裏,每一個桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續使用桶排序進行排

(2)算法描述和實現

具體算法描述以下:

<1>.設置一個定量的數組看成空桶; <2>.遍歷輸入數據,而且把數據一個一個放到對應的桶裏去; <3>.對每一個不是空的桶進行排序; <4>.從不是空的桶裏把排好序的數據拼接起來。

Javascript代碼實現:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*方法說明:桶排序
@param  array 數組
@param  num   桶的數量*/
function bucketSort(array, num) {
     if (array.length <= 1) {
         return array;
     }
     var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/' , space , n = 0;
     num = num || ((num > 1 && regex.test(num)) ? num : 10);
     console. time ( '桶排序耗時' );
     for (var i = 1; i < len; i++) {
         min = min <= array[i] ? min : array[i];
         max = max >= array[i] ? max : array[i];
     }
     space = ( max - min + 1) / num;
     for (var j = 0; j < len; j++) {
         var index = Math.floor((array[j] - min ) / space );
         if (buckets[ index ]) {   //  非空桶,插入排序
             var k = buckets[ index ].length - 1;
             while (k >= 0 && buckets[ index ][k] > array[j]) {
                 buckets[ index ][k + 1] = buckets[ index ][k];
                 k --;
             }
             buckets[ index ][k + 1] = array[j];
         } else {    //空桶,初始化
             buckets[ index ] = [];
相關文章
相關標籤/搜索