注意到操做有結合律,容易想到用一個矩形表示第i次操做對第j個位置的數的影響。那麼修改是單行內的區間修改,而查詢是單列內的區間查詢。這樣二維線段樹上以列爲外層行爲內層直接打標記就能夠維護。而後就喜聞樂見的被卡常了。當年的標算彷佛就是樹套樹,然而都是可持久化AVL樹之類難懂的話。node
#include<bits/stdc++.h> using namespace std; #define ll long long #define N 100010 #define mp(x,y) make_pair((x),(y)) char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } typedef pair<int,int> pii; int n,m,q,t,a[N],root[N<<2],lastans,isonline,cnt; pii o; struct data{int l,r;pii x,y; }tree[N<<8]; pii trans(pii a,pii b){a.first=1ll*a.first*b.first%m;a.second=1ll*a.second*b.first%m;a.second=(a.second+b.second)%m;return a;} void up(int k){tree[k].x=trans(tree[tree[k].l].x,tree[tree[k].r].x);} int newnode(){int k=++cnt;tree[k].x=tree[k].y=o;return k;} void update(int &k,pii p) { if (!k) k=newnode(); tree[k].x=trans(tree[k].x,p); tree[k].y=trans(tree[k].y,p); } void down(int k) { update(tree[k].l,tree[k].y); update(tree[k].r,tree[k].y); tree[k].y=o; } void mul(int &k,int l,int r,int x,int y,pii p) { if (!k) k=newnode(); if (l==x&&r==y) { update(k,p); return; } if (tree[k].y!=o) down(k); int mid=l+r>>1; if (y<=mid) mul(tree[k].l,l,mid,x,y,p); else if (x>mid) mul(tree[k].r,mid+1,r,x,y,p); else mul(tree[k].l,l,mid,x,mid,p),mul(tree[k].r,mid+1,r,mid+1,y,p); up(k); } void modify(int k,int l,int r,int x,int p,int q,pii y) { mul(root[k],1,n,p,q,y); if (l==r) return; int mid=l+r>>1; if (x<=mid) modify(k<<1,l,mid,x,p,q,y); else modify(k<<1|1,mid+1,r,x,p,q,y); } pii Q(int &k,int l,int r,int x) { if (!k) return o; if (l==r) return tree[k].x; if (tree[k].y!=o) down(k); int mid=l+r>>1; if (x<=mid) return Q(tree[k].l,l,mid,x); else return Q(tree[k].r,mid+1,r,x); } pii query(int k,int l,int r,int x,int y,int p) { if (l==x&&r==y) return Q(root[k],1,n,p); int mid=l+r>>1; if (y<=mid) return query(k<<1,l,mid,x,y,p); else if (x>mid) return query(k<<1|1,mid+1,r,x,y,p); else return trans(query(k<<1,l,mid,x,mid,p),query(k<<1|1,mid+1,r,mid+1,y,p)); } int main() { #ifndef ONLINE_JUDGE freopen("ex_input3.txt","r",stdin); freopen("a.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif if (read()&1) isonline=1;o.first=1;tree[0].x=o; n=read(),m=read(); for (int i=1;i<=n;i++) a[i]=read(); q=read(); while (q--) { int op=read(); if (op==1) { int l=read(),r=read(),a=read(),b=read(); if (isonline) l^=lastans,r^=lastans; t++;modify(1,1,100000,t,l,r,mp(a,b)); } else { int l=read(),r=read(),x=read(); if (isonline) l^=lastans,r^=lastans,x^=lastans; pii u=query(1,1,100000,l,r,x); printf("%d\n",lastans=(1ll*a[x]*u.first+u.second)%m); } } return 0; }
考慮小常數作法。注意到x次修改至多會將序列劃分紅2x+1個不一樣的段,那麼用線段樹對修改進行維護,節點內記錄這些修改將序列劃分紅的段,顯然總段數是O(nlogn)的(nq同階)。然而沒法在每次修改時都對全部影響到的節點進行修改,由於單個節點修改並不是O(1)或O(log)。不過能夠在一個節點的修改所有出現後,經過歸併排序兩個子節點來獲得該節點信息。因而這樣修改總複雜度就是O(nlogn)。查詢時在線段樹上區間查詢再在節點上二分便可。一樣是兩個log但常數顯然小了不少。c++
#include<bits/stdc++.h> using namespace std; #define ll long long #define N 100010 #define mp(x,y) make_pair((x),(y)) char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } typedef pair<int,int> pii; int n,m,q,t,a[N],lastans,isonline,L[N<<2],R[N<<2]; pii o; pii trans(pii a,pii b){a.first=1ll*a.first*b.first%m;a.second=1ll*a.second*b.first%m;a.second=(1ll*a.second+b.second)%m;return a;} struct seg{int l,r;pii x;}; vector<seg> tree[N<<2]; vector<int> id[N]; void build(int k,int l,int r) { id[r].push_back(k);L[k]=l,R[k]=r; tree[k].push_back((seg){1,n,o}); if (l==r) return; int mid=l+r>>1; build(k<<1,l,mid),build(k<<1|1,mid+1,r); } vector<seg> merge(vector<seg> a,vector<seg> b) { vector<seg> c; for (int i=0,j=0;i<a.size()||j<b.size();) if (a[i].r==b[j].r) c.push_back((seg){max(a[i].l,b[j].l),a[i].r,trans(a[i].x,b[j].x)}),i++,j++; else if (a[i].r<b[j].r) c.push_back((seg){max(a[i].l,b[j].l),a[i].r,trans(a[i].x,b[j].x)}),i++; else c.push_back((seg){max(a[i].l,b[j].l),b[j].r,trans(a[i].x,b[j].x)}),j++; return c; } pii query(int k,int l,int r,int x) { if (L[k]==l&&R[k]==r) { int l=0,r=tree[k].size(),p=0; while (l<=r) { int mid=l+r>>1; if (x<=tree[k][mid].r) p=mid,r=mid-1; else l=mid+1; } return tree[k][p].x; } int mid=L[k]+R[k]>>1; if (r<=mid) return query(k<<1,l,r,x); else if (l>mid) return query(k<<1|1,l,r,x); else return trans(query(k<<1,l,mid,x),query(k<<1|1,mid+1,r,x)); } int main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("b.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif if (read()&1) isonline=1;o.first=1; n=read(),m=read(); for (int i=1;i<=n;i++) a[i]=read(); q=read();build(1,1,100000);for (int i=1;i<=100000;i++) reverse(id[i].begin(),id[i].end()); while (q--) { int op=read(); if (op==1) { int l=read(),r=read(),a=read(),b=read();vector<seg>tmp; if (isonline) l^=lastans,r^=lastans; if (l>1) tmp.push_back((seg){1,l-1,o}); tmp.push_back((seg){l,r,mp(a,b)}); if (r<n) tmp.push_back((seg){r+1,n,o}); t++; for (int k:id[t]) if (L[k]==R[k]) tree[k]=merge(tree[k],tmp); else tree[k]=merge(tree[k<<1],tree[k<<1|1]); } else { int l=read(),r=read(),x=read(); if (isonline) l^=lastans,r^=lastans,x^=lastans; pii u=query(1,l,r,x); printf("%d\n",lastans=(1ll*a[x]*u.first+u.second)%m); } } return 0; }