PyAlgoTrade使得繪製策略執行變得很是簡單python
from pyalgotrade import strategy from pyalgotrade.technical import ma from pyalgotrade.technical import cross class SMACrossOver(strategy.BacktestingStrategy): def __init__(self, feed, instrument, smaPeriod): super(SMACrossOver, self).__init__(feed) self.__instrument = instrument self.__position = None # We'll use adjusted close values instead of regular close values. self.setUseAdjustedValues(True) self.__prices = feed[instrument].getPriceDataSeries() self.__sma = ma.SMA(self.__prices, smaPeriod) def getSMA(self): return self.__sma def onEnterCanceled(self, position): self.__position = None def onExitOk(self, position): self.__position = None def onExitCanceled(self, position): # If the exit was canceled, re-submit it. self.__position.exitMarket() def onBars(self, bars): # If a position was not opened, check if we should enter a long position. if self.__position is None: if cross.cross_above(self.__prices, self.__sma) > 0: shares = int(self.getBroker().getCash() * 0.9 / bars[self.__instrument].getPrice()) # Enter a buy market order. The order is good till canceled. self.__position = self.enterLong(self.__instrument, shares, True) # Check if we have to exit the position. elif not self.__position.exitActive() and cross.cross_below(self.__prices, self.__sma) > 0: self.__position.exitMarket()
from pyalgotrade import plotter from pyalgotrade.barfeed import yahoofeed from pyalgotrade.stratanalyzer import returns import sma_crossover # Load the yahoo feed from the CSV file feed = yahoofeed.Feed() feed.addBarsFromCSV("orcl", "orcl-2000.csv") # Evaluate the strategy with the feed's bars. myStrategy = sma_crossover.SMACrossOver(feed, "orcl", 20) # Attach a returns analyzers to the strategy. returnsAnalyzer = returns.Returns() myStrategy.attachAnalyzer(returnsAnalyzer) # Attach the plotter to the strategy. plt = plotter.StrategyPlotter(myStrategy) # Include the SMA in the instrument's subplot to get it displayed along with the closing prices. plt.getInstrumentSubplot("orcl").addDataSeries("SMA", myStrategy.getSMA()) # Plot the simple returns on each bar. plt.getOrCreateSubplot("returns").addDataSeries("Simple returns", returnsAnalyzer.getReturns()) # Run the strategy. myStrategy.run() myStrategy.info("Final portfolio value: $%.2f" % myStrategy.getResult()) # Plot the strategy. plt.plot()
代碼正在作3件事情:lua
做者:readilen
連接:http://www.jianshu.com/p/b90f58c6a54c
來源:簡書
著做權歸做者全部。商業轉載請聯繫做者得到受權,非商業轉載請註明出處。spa