JavaShuo
欄目
標籤
The Expressive Power of Neural Networks: A View from the Width
時間 2021-01-11
標籤
neural networks
简体版
原文
原文鏈接
文章目錄 概 主要內容 定理1 定理2 定理3 定理4 定理1的證明 Lu Z, Pu H, Wang F, et al. The expressive power of neural networks: a view from the width[C]. neural information processing systems, 2017: 6232-6240. @article{lu2017
>>阅读原文<<
相關文章
1.
The Unreasonable Effectiveness of Recurrent Neural Networks
2.
On the Number of Linear Regions of Deep Neural Networks
3.
Exploring the teaching of deep learning in neural networks
4.
the english of the simple view
5.
Xavier——Understanding the difficulty of training deep feedforward neural networks
6.
[paper]Towards Evaluating the Robustness of Neural Networks(C&W)
7.
Why LSTMs Stop Your Gradients From Vanishing: A View from the Backwards Pass
8.
On the difficulty of training Recurrent Neural Networks
9.
The Rise of Meta Learning
10.
Applications of Graph Neural Networks
更多相關文章...
•
ASP.NET Width 屬性
-
ASP.NET 教程
•
SQLite 視圖(View)
-
SQLite教程
•
RxJava操作符(一)Creating Observables
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
mysql..the
the&nbs
mysql....the
The One!
5.the
mysql...the
networks
width
expressive
neural
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
「插件」Runner更新Pro版,幫助設計師遠離996
2.
錯誤 707 Could not load file or assembly ‘Newtonsoft.Json, Version=12.0.0.0, Culture=neutral, PublicKe
3.
Jenkins 2018 報告速覽,Kubernetes使用率躍升235%!
4.
TVI-Android技術篇之註解Annotation
5.
android studio啓動項目
6.
Android的ADIL
7.
Android卡頓的檢測及優化方法彙總(線下+線上)
8.
登錄註冊的業務邏輯流程梳理
9.
NDK(1)創建自己的C/C++文件
10.
小菜的系統框架界面設計-你的評估是我的決策
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
The Unreasonable Effectiveness of Recurrent Neural Networks
2.
On the Number of Linear Regions of Deep Neural Networks
3.
Exploring the teaching of deep learning in neural networks
4.
the english of the simple view
5.
Xavier——Understanding the difficulty of training deep feedforward neural networks
6.
[paper]Towards Evaluating the Robustness of Neural Networks(C&W)
7.
Why LSTMs Stop Your Gradients From Vanishing: A View from the Backwards Pass
8.
On the difficulty of training Recurrent Neural Networks
9.
The Rise of Meta Learning
10.
Applications of Graph Neural Networks
>>更多相關文章<<