JavaShuo
欄目
標籤
Xavier——Understanding the difficulty of training deep feedforward neural networks
時間 2020-12-24
原文
原文鏈接
1. 摘要 本文嘗試解釋爲什麼在深度的神經網絡中隨機初始化會讓梯度下降表現很差,並且在此基礎上來幫助設計更好的算法。 作者發現 sigmoid 函數不適合深度網絡,在這種情況下,隨機初始化參數會讓較深的隱藏層陷入到飽和區域。 作者提出了一個新的參數初始化方法,稱之爲 Xavier 初始化,來幫助深度網絡更快地收斂。 2. 激活函數的作用以及訓練過程中的飽和現象 2.1. 三種激活函數 T a n
>>阅读原文<<
相關文章
1.
【Deep Learning】筆記:Understanding the difficulty of training deep feedforward neural networks
2.
論文解析-《Understanding the difficulty of training deep feedforward neural networks》
3.
Paper之DL之BP:《Understanding the difficulty of training deep feedforward neural networks》
4.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
5.
On the difficulty of training Recurrent Neural Networks
6.
神經網絡不同激活函數比較--讀《Understanding the difficulty of training deep feedforward neural networks》
7.
理解訓練深層前饋神經網絡的難度(Undetanding the difficulty of training deep feedforward neural networks )...
8.
神經網絡剖析激活函數優缺點(Undetanding the difficulty of training deep feedforward neural networks)
9.
Understanding Neural Networks Through Deep Visualization
10.
Exploring the teaching of deep learning in neural networks
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
JDK13 GA發佈:5大特性解讀
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
networks
difficulty
xavier
feedforward
understanding
neural
training
deep
flink training
for...of
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微軟準備淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium結合使用(完整篇)
4.
windows服務基礎
5.
mysql 查看線程及kill線程
6.
DevExpresss LookUpEdit詳解
7.
GitLab簡單配置SSHKey與計算機建立連接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【Deep Learning】筆記:Understanding the difficulty of training deep feedforward neural networks
2.
論文解析-《Understanding the difficulty of training deep feedforward neural networks》
3.
Paper之DL之BP:《Understanding the difficulty of training deep feedforward neural networks》
4.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
5.
On the difficulty of training Recurrent Neural Networks
6.
神經網絡不同激活函數比較--讀《Understanding the difficulty of training deep feedforward neural networks》
7.
理解訓練深層前饋神經網絡的難度(Undetanding the difficulty of training deep feedforward neural networks )...
8.
神經網絡剖析激活函數優缺點(Undetanding the difficulty of training deep feedforward neural networks)
9.
Understanding Neural Networks Through Deep Visualization
10.
Exploring the teaching of deep learning in neural networks
>>更多相關文章<<