RocketMQ源碼分析之從官方示例窺探:RocketMQ事務消息實現基本思想

摘要: RocketMQ源碼分析之從官方示例窺探RocketMQ事務消息實現基本思想。java


RocketMQ4.3.0版本開始支持事務消息,後續分享將開始將剖析事務消息的實現原理。首先從官方給出的Demo實例入手,以此通往RocketMQ事務消息的世界中。數據庫

官方版本未發佈以前,從apache rocketmq第一個版本上線後,代碼中存在與事務消息相關的代碼,例如COMMIT、ROLLBACK、PREPARED,在事務消息未開源以前網上對於事務消息的「聲音」基本上是使用相似二階段提交,主要是根據消息系統標誌MessageSysFlag中定義來推測的:apache

  • TRANSACTION_PREPARED_TYPE
  • TRANSACTION_COMMIT_TYPE
  • TRANSACTION_ROLLBACK_TYPE

消息發送者首先發送TRANSACTION_PREPARED_TYPE類型的消息,而後根據事務狀態來決定是提交或回滾事務發送commit請求或rollback請求,若是commit/rollback請求丟失後,rocketmq會在指定超時時間後回查事務狀態來決定提交或回滾事務。緩存

讓咱們各自帶着本身的理解和猜想,從閱讀RocketMQ官方提供的Demo程序入手,試圖窺探一些大致的信息。架構

Demo示例程序位於:/rocketmq-example/src/main/java/org/apache/rocketmq/example/transaction包中。該包中未放置消息消費者,爲了驗證事務的消息消費狀況,咱們能夠從其餘包copy一個消費者,從而先運行生產者,而後運行消費者,判斷事務消息的預發放、提交、回滾等效果,二話不說,先運行一下,看下效果再說:
消息發送端運行結果:ide

SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5767EC0000, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=0]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57680F0001, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=1]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57681E0002, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=3], queueOffset=2]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57682B0003, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=0], queueOffset=3]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768380004, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=4]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768490005, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=5]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768560006, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=3], queueOffset=6]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768640007, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=0], queueOffset=7]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768730008, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=8]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768800009, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=9]

消息消費端效果:源碼分析

Consumer Started.
ConsumeMessageThread_1 Receive New Messages: [MessageExt [queueId=0, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715812, bornHost=/192.168.1.5:55482, storeTimestamp=1532745749010, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F0000000000001DE8, commitLogOffset=7656, bodyCRC=988340972, reconsumeTimes=0, preparedTransactionOffset=5477, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY7, TRAN_MSG=true, CONSUME_START_TIME=1532746024360, UNIQ_KEY=C0A8010518DC6D06D69C8D5768640007, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagC, REAL_QID=0}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 55], transactionId='C0A8010518DC6D06D69C8D5768640007'}]] 
ConsumeMessageThread_2 Receive New Messages: [MessageExt [queueId=1, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715768, bornHost=/192.168.1.5:55482, storeTimestamp=1532745749008, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F0000000000001B91, commitLogOffset=7057, bodyCRC=601994070, reconsumeTimes=0, preparedTransactionOffset=4496, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY4, TRAN_MSG=true, CONSUME_START_TIME=1532746024361, UNIQ_KEY=C0A8010518DC6D06D69C8D5768380004, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagE, REAL_QID=1}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 52], transactionId='C0A8010518DC6D06D69C8D5768380004'}]] 
ConsumeMessageThread_3 Receive New Messages: [MessageExt [queueId=2, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715727, bornHost=/192.168.1.5:55482, storeTimestamp=1532745748834, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F000000000000193A, commitLogOffset=6458, bodyCRC=1401636825, reconsumeTimes=0, preparedTransactionOffset=3515, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY1, TRAN_MSG=true, CONSUME_START_TIME=1532746024368, UNIQ_KEY=C0A8010518DC6D06D69C8D57680F0001, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagB, REAL_QID=2}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 49], transactionId='C0A8010518DC6D06D69C8D57680F0001'}]]

綜上所述,服務端發送了10條消息,而消費端只收到3條消息,應該是因爲事務回滾,形成只提交了3條消息,爲了更加嚴謹,能夠安裝一個rocketmq-consonse,更加直觀的觀察shangshagn's上述結果:
clipboard學習

接下來對示例代碼進行解讀:線程

一、生產者端代碼解讀:架構設計

public class TransactionProducer {
    public static void main(String[] args) throws MQClientException, InterruptedException {
        TransactionListener transactionListener = new TransactionListenerImpl();        // @1
        TransactionMQProducer producer = new TransactionMQProducer("please_rename_unique_group_name");
        producer.setNamesrvAddr("127.0.0.1:9876");
        ExecutorService executorService = new ThreadPoolExecutor(2, 5, 100, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2000), new ThreadFactory() {
            @Override
            public Thread newThread(Runnable r) {
                Thread thread = new Thread(r);
                thread.setName("client-transaction-msg-check-thread");
                return thread;
            }
        });      // @2
        producer.setExecutorService(executorService);                                // @3
        producer.setTransactionListener(transactionListener);                      // @4
        producer.start();
        String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
        for (int i = 0; i < 10; i++) {                                                                    // @5
            try {
                Message msg =
                    new Message("transaction_topic_test", tags[i % tags.length], "KEY" + i,
                        ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
                SendResult sendResult = producer.sendMessageInTransaction(msg, null);
                System.out.printf("%s%n", sendResult);

                Thread.sleep(10);
            } catch (MQClientException | UnsupportedEncodingException e) {
                e.printStackTrace();
            }
        }
        for (int i = 0; i < 100000; i++) {     //這裏只是阻止生產者過早退出,致使事務消息的相關機制沒法運行
            Thread.sleep(1000);
        }
        producer.shutdown();
    }
}

代碼@1:建立TransactionListener 實例,字面理解爲事務消息事件監聽器,下文詳細對其進行展開。
代碼@2:ExecutorService executorService,建立一個線程池,其線程的名稱前綴」client-transaction-msg-check-thread「,從字面理解爲客戶端事務消息狀態檢測線程,咱們能夠大膽的猜想一下是否是這個線程池調用TransactionListener方法,完成對事務消息的檢測呢?【這裏只是做者的猜想,你們不能當真,在做者後續文章發佈後,若是該觀點錯誤,會加以修復,這裏寫出來,主要是想分享一下我讀源碼的方法】。
代碼@3:爲事務消息發送者設置線程池。
代碼@4:爲事務消息發送者設置事務監聽器。
代碼@5:發送10條消息。

二、TransactionListener代碼解讀

public class TransactionListenerImpl implements TransactionListener {
    private AtomicInteger transactionIndex = new AtomicInteger(0);

    private ConcurrentHashMap<String, Integer> localTrans = new ConcurrentHashMap<>();

    @Override
    public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
        int value = transactionIndex.getAndIncrement();
        int status = value % 3;
        localTrans.put(msg.getTransactionId(), status);
        return LocalTransactionState.UNKNOW;
    }

    @Override
    public LocalTransactionState checkLocalTransaction(MessageExt msg) {
        Integer status = localTrans.get(msg.getTransactionId());
        if (null != status) {
            switch (status) {
                case 0:
                    return LocalTransactionState.UNKNOW;
                case 1:
                    return LocalTransactionState.COMMIT_MESSAGE;
                case 2:
                    return LocalTransactionState.ROLLBACK_MESSAGE;
            }
        }
        return LocalTransactionState.COMMIT_MESSAGE;
    }
}
  1. executeLocalTransaction方法:記錄本地事務的事務狀態,這裏其實現就是循環設置事務消息的狀態爲0,1,2,demo中是把消息的狀態數據存放在一個Map中。實際應用時一般會持久化消息的事務狀態,例如數據庫或緩存。
  2. checkLocalTransaction方法,事務回查業務實現,查本地事務表,判斷事務的狀態如爲0:UNKNOW,1:COMMIT_MESSAGE;ROLLBACK_MESSAGE。這裏就能解釋,生產者連續發10條消息,由於只有3條消息的事務狀態爲COMMIT_MESSAGE,故消息消費者只能消費3條。

到這裏,基本上仍是能夠得知事務消息的實現方式,基本與文章開頭所示的「網上聲音」實現相似,下一節將詳細分析TransactionMQProducer事務消息發送的實現細節。

鄭重聲明:本文主要是展現事務消息的基本使用,本文所下的結論還僅僅是做者的猜想,下一篇文章,將重點分析事務消息的實現細節,本文一個很是重要的目的,是向讀者朋友們展現做者學習源碼的一個方法,總結爲:先作全面瞭解(網上,官方文檔)、而後加以本身的思考,從Demo實例入手學習,將學習任務分解之,邊寫邊看。

這算不算文末有彩蛋呢?呵呵,下一篇見:詳細分析RocketMQ事務消息的實現細節。

本文節選自書籍《RocketMQ技術內幕:RocketMQ架構設計與實現原理》
1464507522

做者: 丁威
原文連接 本文爲雲棲社區原創內容,未經容許不得轉載。 

相關文章
相關標籤/搜索