引入依賴數據庫
<dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>0.11.0.0</version> //版本爲0.11.0.0 </dependency>
生產者的配置項都在ProducerConfig類中說明,每一項配置都有對應的doc說明。apache
生產者使用api 帶回調函數demo,還有阻塞方式運行,返回Future對象,經過future對象get()到返回的值。api
public class CustomProducer { public static void main(String[] args) throws ExecutionException, InterruptedException { Properties props = new Properties(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.152.3:9092,192.168.152.2:9092,192.168.152.1:9092");// props.put(ProducerConfig.ACKS_CONFIG, "all"); //leader 確認機制 0 1 all props.put(ProducerConfig.RETRIES_CONFIG, 1);//重試次數 props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);//生產者批發送大小 props.put(ProducerConfig.LINGER_MS_CONFIG, 1);//生產者達不到批發送大小,最短等待時間 props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);//RecordAccumulator 緩衝區大小 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); //key的序列化器 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); //value的序列化器 Producer<String, String> producer = new KafkaProducer<>(props); //ProducerConfig對象傳參到KafkaProducer構造函數,生成producer對象 for (int i = 0; i < 10; i++) { //producer.send(),消息封裝成ProducerRecord對象 //帶回調發送消息,若是發送失敗會自動重試 producer.send(new ProducerRecord<String, String>("minerprofit", Integer.toString(i), Integer.toString(i)), (RecordMetadata metadata,Exception exception) -> { if (exception == null) { System.out.println("success->" + metadata.offset()); } else { exception.printStackTrace(); } } }); } producer.close(); //關閉消費者 }
自動提交offset方式異步
public class CustomConsumer { public static void main(String[] args) { Properties props = new Properties(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.152.3:9092,192.168.152.2:9092,192.168.152.1:9092");// props.put(ConsumerConfig.GROUP_ID_CONFIG, "miner"); //消費者組 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); //開啓自動提交 props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000"); //自動提交最短期 //key反序列化類 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer"); //value反序列化類 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("profit")); //消費者組訂閱的topic while (true) { ConsumerRecords<String, String> records = consumer.poll(100); //拉取數據 for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value= %s%n", record.offset(), record.key(), record.value()); } } } }
手動提交offset方式:ide
手動提交有兩種提交方式一種是同步提交,一種是異步提交。
public class CustomConsumer { public static void main(String[] args) { Properties props = new Properties(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.152.3:9092,192.168.152.2:9092,192.168.152.1:9092");// props.put(ConsumerConfig.GROUP_ID_CONFIG, "miner"); //消費者組 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); //開啓自動提交 //props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000"); //自動提交最短期 //key反序列化類 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer"); //value反序列化類 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("profit")); //消費者組訂閱的topic while (true) { ConsumerRecords<String, String> records = consumer.poll(100); //拉取數據 for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value= %s%n", record.offset(), record.key(), record.value()); } consumer.commitSync(); //同步提交offset,會阻塞當前線程的運行 } } }
異步提交函數
consumer.commitAsync(new OffsetCommitCallback() { @Override public void onComplete(Map<TopicPartition,OffsetAndMetadata> offsets, Exception exception) { if (exception != null) { System.err.println("Commit failed:" + offsets); } } });
什麼是冪等性:spa
生產者生產的消息可以發送到消息中間件中,消息中間件不會重複接受也不會少接收;消費者進行消費消息,不會重複消費,也不會少消費。線程
kafka結合具體業務如何保證冪等性:code
kafka 生產者確認acks使用all級別,生產者發送到kafka的消息只可能重複不可能丟失,保證at least once;消費者使用異步提交offset,在業務中將獲得的消息首先入數據庫,若是庫中已經存在了相同的消息,那麼若是獲得了新的相同的消息,那麼就能夠剔除重複的消息。中間件