通過一段時間的折騰,終於整明白scrapy分佈式是怎麼個搞法了,特記錄一點心得。html
雖然scrapy能作的事情不少,可是要作到大規模的分佈式應用則捉襟見肘。有能人改變了scrapy的隊列調度,將起始的網址從start_urls裏分離出來,改成從redis讀取,多個客戶端能夠同時讀取同一個redis,從而實現了分佈式的爬蟲。就算在同一臺電腦上,也能夠多進程的運行爬蟲,在大規模抓取的過程當中很是有效。python
準備: linux
一、windows一臺(從:scrapy)redis
二、linux一臺(主:scrapy\redis\mongo)mongodb
ip:192.168.184.129數據庫
三、python3.6windows
linux下scrapy的配置步驟:數據結構
1、安裝python3.6 yum install openssl-devel -y 解決pip3不能使用的問題(pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available) 下載python軟件包,Python-3.6.1.tar.xz,解壓後 ./configure --prefix=/python3 make make install 加上環境變量: PATH=/python3/bin:$PATH:$HOME/bin export PATH 安裝完成後,pip3默認也已經安裝完成了(安裝前須要先yum gcc) 2、安裝Twisted 下載Twisted-17.9.0.tar.bz2,解壓後 cd Twisted-17.9.0, python3 setup.py install 3、安裝scrapy pip3 install scrapy pip3 install scrapy-redis 4、安裝redis 見博文redis安裝與簡單使用 錯誤:You need tcl 8.5 or newer in order to run the Redis test 1、wget http://downloads.sourceforge.net/tcl/tcl8.6.1-src.tar.gz 2、tar -xvf tcl8.6.1-src.tar.gz 3、cd tcl8.6.1/unix ; make; make install
cp /root/redis-3.2.11/redis.conf /etc/
啓動:/root/redis-3.2.11/src/redis-server /etc/redis.conf & 5、pip3 install redis 6、安裝mongodb 參考菜鳥教程:http://www.runoob.com/mongodb/mongodb-linux-install.html
啓動:# mongod --bind_ip 192.168.184.129 &
7、pip3 install pymongo
windows上scrapy的部署步驟:併發
1、安裝wheel pip install wheel 2、安裝lxml https://pypi.python.org/pypi/lxml/4.1.0 3、安裝pyopenssl https://pypi.python.org/pypi/pyOpenSSL/17.5.0 4、安裝Twisted https://www.lfd.uci.edu/~gohlke/pythonlibs/ 5、安裝pywin32 https://sourceforge.net/projects/pywin32/files/ 6、安裝scrapy pip install scrapy
部署代碼:dom
我以美劇天堂的電影爬取爲簡單例子,說一下分佈式的實現,代碼linux和windows上各放一份,配置同樣,二者可同時運行爬取。
只列出須要修改的地方:
settings
設置爬取數據的存儲數據庫(mongodb),指紋和queue存儲的數據庫(redis)
ROBOTSTXT_OBEY = False # 禁止robot CONCURRENT_REQUESTS = 1 # scrapy調試queue的最大併發,默認16 ITEM_PIPELINES = { 'meiju.pipelines.MongoPipeline': 300, } MONGO_URI = '192.168.184.129' # mongodb鏈接信息 MONGO_DATABASE = 'mj' SCHEDULER = "scrapy_redis.scheduler.Scheduler" # 使用scrapy_redis的調度 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # 在redis庫中去重(url) # REDIS_URL = 'redis://root:kongzhagen@localhost:6379' # 若是redis有密碼,使用這個配置 REDIS_HOST = '192.168.184.129' #redisdb鏈接信息 REDIS_PORT = 6379 SCHEDULER_PERSIST = True # 不清空指紋
piplines
存儲到MongoDB的代碼
import pymongo class MeijuPipeline(object): def process_item(self, item, spider): return item class MongoPipeline(object): collection_name = 'movies' def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DATABASE', 'items') ) def open_spider(self, spider): self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def close_spider(self, spider): self.client.close() def process_item(self, item, spider): self.db[self.collection_name].insert_one(dict(item)) return item
items
數據結構
import scrapy class MeijuItem(scrapy.Item): movieName = scrapy.Field() status = scrapy.Field() english = scrapy.Field() alias = scrapy.Field() tv = scrapy.Field() year = scrapy.Field() type = scrapy.Field()
爬蟲腳本mj.py
# -*- coding: utf-8 -*- import scrapy from scrapy import Request class MjSpider(scrapy.Spider): name = 'mj' allowed_domains = ['meijutt.com'] # start_urls = ['http://www.meijutt.com/file/list1.html'] def start_requests(self): yield Request(url='http://www.meijutt.com/file/list1.html', callback=self.parse) def parse(self, response): from meiju.items import MeijuItem movies = response.xpath('//div[@class="cn_box2"]') for movie in movies: item = MeijuItem() item['movieName'] = movie.xpath('./ul[@class="list_20"]/li[1]/a/text()').extract_first() item['status'] = movie.xpath('./ul[@class="list_20"]/li[2]/span/font/text()').extract_first() item['english'] = movie.xpath('./ul[@class="list_20"]/li[3]/font[2]/text()').extract_first() item['alias'] = movie.xpath('./ul[@class="list_20"]/li[4]/font[2]/text()').extract_first() item['tv'] = movie.xpath('./ul[@class="list_20"]/li[5]/font[2]/text()').extract_first() item['year'] = movie.xpath('./ul[@class="list_20"]/li[6]/font[2]/text()').extract_first() item['type'] = movie.xpath('./ul[@class="list_20"]/li[7]/font[2]/text()').extract_first() yield item for i in response.xpath('//div[@class="cn_box2"]/ul[@class="list_20"]/li[1]/a/@href').extract(): yield Request(url='http://www.meijutt.com' + i) # next = 'http://www.meijutt.com' + response.xpath("//a[contains(.,'下一頁')]/@href")[1].extract() # print(next) # yield Request(url=next, callback=self.parse)
看一下redis中的狀況:
看看mongodb中的數據: