在上一篇的最後, 我提到了一個矩陣乘法, 此次與CPU進行對比, 從中能夠很明顯GPU在並行計算上的優點.html
在貼出代碼以前, 來看下我經常使用的計時函數, 能夠精確到微秒級. 首先頭文件是
#include<sys/time.h>
. 結構體爲:linux
struct timeval{
long tv_sec; /*秒*/
long tv_usec; /*微秒*/
};
複製代碼
來看下使用的小栗子:git
struct timeval start, end;
double timeuse;
int sum = 0;
gettimeofday (&start, NULL);
for (int i = 0; i < 10000; i++){
sum += i;
}
gettimeofday (&end, NULL);
timeuse = end.tv_sec - start.tv_sec + (end.tv_usec - start.tv_usec)/1000000.0;
printf("Use Time:%f\n",timeuse);
複製代碼
其實CPU部分的代碼就是for循環. 你可能會考慮到用多線程, 可是我實測效果不太好, 這篇有代碼, 能夠去看看. 因此用的基礎for循環.github
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#define w 1000
struct Matrix
{
int width;
int height;
float *elements;
};
void matMul(float * M, float * N, float * P, int width){
for (int i = 0; i < width; i++){
for (int j = 0; j < width; j++){
float sum = 0;
for (int k = 0; k < width; k++){
float a = M[i * width + k];
float b = N[k * width + j];
sum += a * b;
}
P[i * width + j] = sum;
}
}
}
int main(){
int width = w;
int height = w;
float * m = (float *)malloc (width * height * sizeof (float));
float * n = (float *)malloc (width * height * sizeof (float));
float * p = (float *)malloc (width * height * sizeof (float));
for (int i = 0; i < width * height; i++){
m[i] = 1.0;
n[i] = 2.0;
}
struct timeval t1,t2;
gettimeofday(&t1,NULL);
double timeuse;
matMul(m, n, p, w);
gettimeofday(&t2,NULL);
timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0;
printf("Use Time:%f\n",timeuse);
return 0;
}
複製代碼
cuda部分的代碼直接貼出來, 解析能夠看以前的文章.bash
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#define w 1000
struct Matrix
{
int width;
int height;
float *elements;
};
__device__ float getElement(Matrix *A, int row, int col)
{
return A->elements[row * A->width + col];
}
__device__ void setElement(Matrix *A, int row, int col, float value)
{
A->elements[row * A->width + col] = value;
}
__global__ void matMulKernel(Matrix *A, Matrix *B, Matrix *C)
{
float Cvalue = 0.0;
int row = threadIdx.y + blockIdx.y * blockDim.y;
int col = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = 0; i < A->width; ++i)
{
Cvalue += getElement(A, row, i) * getElement(B, i, col);
}
setElement(C, row, col, Cvalue);
}
int main()
{
int width = w;
int height = w;
Matrix *A, *B, *C;
cudaMallocManaged((void**)&A, sizeof(Matrix));
cudaMallocManaged((void**)&B, sizeof(Matrix));
cudaMallocManaged((void**)&C, sizeof(Matrix));
int nBytes = width * height * sizeof(float);
cudaMallocManaged((void**)&A->elements, nBytes);
cudaMallocManaged((void**)&B->elements, nBytes);
cudaMallocManaged((void**)&C->elements, nBytes);
A->height = height;
A->width = width;
B->height = height;
B->width = width;
C->height = height;
C->width = width;
for (int i = 0; i < width * height; ++i)
{
A->elements[i] = 1.0;
B->elements[i] = 2.0;
}
dim3 blockSize(32, 32);
dim3 gridSize((width + blockSize.x - 1) / blockSize.x,
(height + blockSize.y - 1) / blockSize.y);
struct timeval t1,t2;
gettimeofday(&t1,NULL);
double timeuse;
matMulKernel << < gridSize, blockSize >> >(A, B, C);
cudaDeviceSynchronize();
gettimeofday(&t2,NULL);
timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0;
printf("Use Time:%f\n", timeuse);
return 0;
}
複製代碼
來看下結果圖:多線程
gpu是gt750m, cpu是i7-4700mq. 其實cpu是比gpu好不少的, 可是並行計算上gpu的優點依舊明顯.函數
喜歡記得點贊哦, 有意見或者建議評論區見~ui