Dijkstra(迪傑斯特拉)算法是典型的最短路徑路由算法,用於計算一個節點到其餘全部節點的最短路徑。主要特色是以起始點爲中心向外層層擴展,直到擴展到終點爲止。 java
Dijkstra通常的表述一般有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其採用的是貪心法的算法策略,大概過程以下:
1.聲明兩個集合,open和close,open用於存儲未遍歷的節點,close用來存儲已遍歷的節點
2.初始階段,將初始節點放入close,其餘全部節點放入open
3.以初始節點爲中心向外一層層遍歷,獲取離指定節點最近的子節點放入close並重新計算路徑,直至close包含全部子節點 node
代碼實例以下:
Node對象用於封裝節點信息,包括名字和子節點 算法
public class Node { private String name; private Map<Node,Integer> child=new HashMap<Node,Integer>(); public Node(String name){ this.name=name; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Map<Node, Integer> getChild() { return child; } public void setChild(Map<Node, Integer> child) { this.child = child; } }
MapBuilder用於初始化數據源,返回圖的起始節點 數組
public class MapBuilder { public Node build(Set<Node> open, Set<Node> close){ Node nodeA=new Node("A"); Node nodeB=new Node("B"); Node nodeC=new Node("C"); Node nodeD=new Node("D"); Node nodeE=new Node("E"); Node nodeF=new Node("F"); Node nodeG=new Node("G"); Node nodeH=new Node("H"); nodeA.getChild().put(nodeB, 1); nodeA.getChild().put(nodeC, 1); nodeA.getChild().put(nodeD, 4); nodeA.getChild().put(nodeG, 5); nodeA.getChild().put(nodeF, 2); nodeB.getChild().put(nodeA, 1); nodeB.getChild().put(nodeF, 2); nodeB.getChild().put(nodeH, 4); nodeC.getChild().put(nodeA, 1); nodeC.getChild().put(nodeG, 3); nodeD.getChild().put(nodeA, 4); nodeD.getChild().put(nodeE, 1); nodeE.getChild().put(nodeD, 1); nodeE.getChild().put(nodeF, 1); nodeF.getChild().put(nodeE, 1); nodeF.getChild().put(nodeB, 2); nodeF.getChild().put(nodeA, 2); nodeG.getChild().put(nodeC, 3); nodeG.getChild().put(nodeA, 5); nodeG.getChild().put(nodeH, 1); nodeH.getChild().put(nodeB, 4); nodeH.getChild().put(nodeG, 1); open.add(nodeB); open.add(nodeC); open.add(nodeD); open.add(nodeE); open.add(nodeF); open.add(nodeG); open.add(nodeH); close.add(nodeA); return nodeA; } }圖的結構以下圖所示:
Dijkstra對象用於計算起始節點到全部其餘節點的最短路徑 測試
public class Dijkstra { Set<Node> open=new HashSet<Node>(); Set<Node> close=new HashSet<Node>(); Map<String,Integer> path=new HashMap<String,Integer>();//封裝路徑距離 Map<String,String> pathInfo=new HashMap<String,String>();//封裝路徑信息 public Node init(){ //初始路徑,因沒有A->E這條路徑,因此path(E)設置爲Integer.MAX_VALUE path.put("B", 1); pathInfo.put("B", "A->B"); path.put("C", 1); pathInfo.put("C", "A->C"); path.put("D", 4); pathInfo.put("D", "A->D"); path.put("E", Integer.MAX_VALUE); pathInfo.put("E", "A"); path.put("F", 2); pathInfo.put("F", "A->F"); path.put("G", 5); pathInfo.put("G", "A->G"); path.put("H", Integer.MAX_VALUE); pathInfo.put("H", "A"); //將初始節點放入close,其餘節點放入open Node start=new MapBuilder().build(open,close); return start; } public void computePath(Node start){ Node nearest=getShortestPath(start);//取距離start節點最近的子節點,放入close if(nearest==null){ return; } close.add(nearest); open.remove(nearest); Map<Node,Integer> childs=nearest.getChild(); for(Node child:childs.keySet()){ if(open.contains(child)){//若是子節點在open中 Integer newCompute=path.get(nearest.getName())+childs.get(child); if(path.get(child.getName())>newCompute){//以前設置的距離大於新計算出來的距離 path.put(child.getName(), newCompute); pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"->"+child.getName()); } } } computePath(start);//重複執行本身,確保全部子節點被遍歷 computePath(nearest);//向外一層層遞歸,直至全部頂點被遍歷 } public void printPathInfo(){ Set<Map.Entry<String, String>> pathInfos=pathInfo.entrySet(); for(Map.Entry<String, String> pathInfo:pathInfos){ System.out.println(pathInfo.getKey()+":"+pathInfo.getValue()); } } /** * 獲取與node最近的子節點 */ private Node getShortestPath(Node node){ Node res=null; int minDis=Integer.MAX_VALUE; Map<Node,Integer> childs=node.getChild(); for(Node child:childs.keySet()){ if(open.contains(child)){ int distance=childs.get(child); if(distance<minDis){ minDis=distance; res=child; } } } return res; } } Main用於測試Dijkstra對象 public class Main { public static void main(String[] args) { Dijkstra test=new Dijkstra(); Node start=test.init(); test.computePath(start); test.printPathInfo(); } }
打印輸出以下:
D:A->D
E:A->F->E
F:A->F
G:A->C->G
B:A->B
C:A->C
H:A->B->H ui
矩陣實現: this
public class Dijkstra { public static void main(String[] args) { // TODO Auto-generated method stub int[][] weight = { {0,3,9999999,7,9999999}, {3,0,4,2,9999999}, {9999999,4,0,5,6}, {7,2,5,0,4}, {9999999,9999999,6,4,0} }; int[] path = Dijsktra(weight,0); for(int i = 0;i < path.length;i++) System.out.print(path[i] + " "); } public static int[] Dijsktra(int[][] weight,int start){ //接受一個有向圖的權重矩陣,和一個起點編號start(從0編號,頂點存在數組中) //返回一個int[] 數組,表示從start到它的最短路徑長度 int n = weight.length; //頂點個數 int[] shortPath = new int[n]; //存放從start到其餘各點的最短路徑 int[] visited = new int[n]; //標記當前該頂點的最短路徑是否已經求出,1表示已求出 //初始化,第一個頂點求出 shortPath[start] = 0; visited[start] = 1; for(int count = 1;count <= n - 1;count++) //要加入n-1個頂點 { int k = -1; //選出一個距離初始頂點start最近的未標記頂點 int dmin = 1000; for(int i = 0;i < n;i++) { if(visited[i] == 0 && weight[start][i] < dmin) { dmin = weight[start][i]; k = i; } } //將新選出的頂點標記爲已求出最短路徑,且到start的最短路徑就是dmin shortPath[k] = dmin; visited[k] = 1; //以k爲中間點想,修正從start到未訪問各點的距離 for(int i = 0;i < n;i++) { if(visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]) weight[start][i] = weight[start][k] + weight[k][i]; } } return shortPath; } }