最後再來看一下close的過程(src/api.cpp): api
int CUDTUnited::close(const UDTSOCKET u) { CUDTSocket* s = locate(u); if (NULL == s) throw CUDTException(5, 4, 0); CGuard socket_cg(s->m_ControlLock); if (s->m_Status == LISTENING) { if (s->m_pUDT->m_bBroken) return 0; s->m_TimeStamp = CTimer::getTime(); s->m_pUDT->m_bBroken = true; // broadcast all "accept" waiting #ifndef WIN32 pthread_mutex_lock(&(s->m_AcceptLock)); pthread_cond_broadcast(&(s->m_AcceptCond)); pthread_mutex_unlock(&(s->m_AcceptLock)); #else SetEvent(s->m_AcceptCond); #endif return 0; } s->m_pUDT->close(); // synchronize with garbage collection. CGuard manager_cg(m_ControlLock); // since "s" is located before m_ControlLock, locate it again in case it became invalid map<UDTSOCKET, CUDTSocket*>::iterator i = m_Sockets.find(u); if ((i == m_Sockets.end()) || (i->second->m_Status == CLOSED)) return 0; s = i->second; s->m_Status = CLOSED; // a socket will not be immediated removed when it is closed // in order to prevent other methods from accessing invalid address // a timer is started and the socket will be removed after approximately 1 second s->m_TimeStamp = CTimer::getTime(); m_Sockets.erase(s->m_SocketID); m_ClosedSockets.insert(pair<UDTSOCKET, CUDTSocket*>(s->m_SocketID, s)); CTimer::triggerEvent(); return 0; } int CUDT::close(UDTSOCKET u) { try { return s_UDTUnited.close(u); } catch (CUDTException &e) { s_UDTUnited.setError(new CUDTException(e)); return ERROR; } catch (...) { s_UDTUnited.setError(new CUDTException(-1, 0, 0)); return ERROR; } } int close(UDTSOCKET u) { return CUDT::close(u); }
這個API的實現結構並無什麼特別值得關注的地方。直接來看CUDTUnited::close()。在CUDTUnited::close()函數中,主要是分兩種狀況來處理的:一種是Server端用於接受鏈接的Listening socket;另外一種是常規的用於進行數據收發的socket。 app
對於第一種狀況,能夠看到,這裏主要是設置了對應的CUDTSocket s的m_TimeStamp爲當前時間,並將s->m_pUDT->m_bBroken置爲true,而後將等待在accept的線程喚醒就結束了。無論是在CUDTUnited::close()中,仍是在被它喚醒的執行CUDTUnited::accept()的線程中,都沒有看到有實際作最後的清理的動做,好比被加入隊列的爲新鏈接請求建立的UDT Socket的清理,將當前UDT Socket從RcvQueue的listener移除。這些清理的動做只有在UDT的垃圾回收線程裏作了。 socket
接着是第二種狀況,能夠看到首先是執行了s->m_pUDT->close(),不難想像這個close中作的事情必定特別多;作狀態的切換,將Socket的狀態切換到CLOSED狀態;更新對應的CUDTSocket s的m_TimeStamp爲當前時間;將UDT Socket從總的打開socket表m_Sockets中移除,並加入到已關閉socket表m_ClosedSockets中,而後trigger一個Timer event並返回。 async
而後來看CUDT::close()(src/core.cpp): 函數
void CUDT::close() { if (!m_bOpened) return; if (0 != m_Linger.l_onoff) { uint64_t entertime = CTimer::getTime(); while (!m_bBroken && m_bConnected && (m_pSndBuffer->getCurrBufSize() > 0) && (CTimer::getTime() - entertime < m_Linger.l_linger * 1000000ULL)) { // linger has been checked by previous close() call and has expired if (m_ullLingerExpiration >= entertime) break; if (!m_bSynSending) { // if this socket enables asynchronous sending, return immediately and let GC to close it later if (0 == m_ullLingerExpiration) m_ullLingerExpiration = entertime + m_Linger.l_linger * 1000000ULL; return; } #ifndef WIN32 timespec ts; ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep(&ts, NULL); #else Sleep(1); #endif } } // remove this socket from the snd queue if (m_bConnected) m_pSndQueue->m_pSndUList->remove(this); // trigger any pending IO events. s_UDTUnited.m_EPoll.update_events(m_SocketID, m_sPollID, UDT_EPOLL_ERR, true); // then remove itself from all epoll monitoring try { for (set<int>::iterator i = m_sPollID.begin(); i != m_sPollID.end(); ++i) s_UDTUnited.m_EPoll.remove_usock(*i, m_SocketID); } catch (...) { } if (!m_bOpened) return; // Inform the threads handler to stop. m_bClosing = true; CGuard cg(m_ConnectionLock); // Signal the sender and recver if they are waiting for data. releaseSynch(); if (m_bListening) { m_bListening = false; m_pRcvQueue->removeListener(this); } else if (m_bConnecting) { m_pRcvQueue->removeConnector(m_SocketID); } if (m_bConnected) { if (!m_bShutdown) sendCtrl(5); m_pCC->close(); // Store current connection information. CInfoBlock ib; ib.m_iIPversion = m_iIPversion; CInfoBlock::convert(m_pPeerAddr, m_iIPversion, ib.m_piIP); ib.m_iRTT = m_iRTT; ib.m_iBandwidth = m_iBandwidth; m_pCache->update(&ib); m_bConnected = false; } // waiting all send and recv calls to stop CGuard sendguard(m_SendLock); CGuard recvguard(m_RecvLock); // CLOSED. m_bOpened = false; }能夠看到,這個函數中作的事情大致以下:
1. 檢查Open狀態m_bOpened,若m_bOpened爲false,則直接返回,不然繼續執行。 ui
2. 等待一段時間,以使在發送緩衝區中尚未發送完成的數據可以可靠地發送完成,固然過了必定時間以後,發送緩衝區中仍是存在沒有可靠地發送完成的數據,則那些數據會被直接丟棄掉。這裏的等待,是一種比較高頻率地輪詢。 this
3. 若是當前處於Connected狀態,則將當前UDT Socket從發送隊列的發送者列表m_pSndUList中移除出去。 spa
4. 這裏再一次檢查了m_bOpened的值。 線程
5. 將m_bClosing置爲true。 code
如咱們前面看到的,鏈接成功創建以後,UDT Socket會被加入到RcvQueue的數據接收者列表m_pRcvUList和m_pHash中,但這裏在關閉UDT Socket時,卻沒有看到有將當前UDT Socket從那些列表中移除的code。這究竟是怎麼回事呢?
來看一下CRcvQueue::worker()中的這段code:
CRNode* ul = self->m_pRcvUList->m_pUList; uint64_t ctime = currtime - 100000 * CTimer::getCPUFrequency(); while ((NULL != ul) && (ul->m_llTimeStamp < ctime)) { CUDT* u = ul->m_pUDT; if (u->m_bConnected && !u->m_bBroken && !u->m_bClosing) { u->checkTimers(); self->m_pRcvUList->update(u); } else { // the socket must be removed from Hash table first, then RcvUList self->m_pHash->remove(u->m_SocketID); self->m_pRcvUList->remove(u); u->m_pRNode->m_bOnList = false; } ul = self->m_pRcvUList->m_pUList; }將一個UDT Socket加入 到RcvQueue的數據接收者列表m_pRcvUList和m_pHash中的動做是由RcvQueue的worker線程自動完成的,那麼將一個UDT Socket從RcvQueue的數據接收者列表m_pRcvUList和m_pHash中移除的動做天然也是有 RcvQueue的worker線程自動完成的。
在這裏能夠看到,將UDT Socket的m_bClosing置爲true以後,RcvQueue的worker線程自會將UDT Socket從RcvQueue的數據接收者列表m_pRcvUList和m_pHash中移除。
6. 喚醒全部等待在這個UDT Socket的condition上的線程。
7. 處理處於listening狀態的socket,主要是將m_bListening置爲false,並將當前UDT Socket從RcvQueue的listener移除。
這裏卻是看到了對於listener的處理了,可是仍是沒有看到對於處在隊列中,但尚未被accept返回的UDT Socket的處理。
8. 處理處於m_bConnecting狀態的socket,主要是將當前UDT Socket從connector列表中移除。
9. 處理處於m_bConnected狀態的socket,主要是發送shutdown消息給peer端,並將m_bConnected置爲false。
10. 將m_bOpened置爲false。
能夠看到,七、八、9的處理應該是互斥的。
Done。