本文輸入數據是MNIST,全稱是Modified National Institute of Standards and Technology,是一組由這個機構蒐集的手寫數字掃描文件和每一個文件對應標籤的數據集,通過必定的修改使其適合機器學習算法讀取。這個數據集能夠從牛的不行的Yann LeCun教授的網站獲取。git
本系列的其餘文章已經根據TensorFlow的官方教程基於MNIST數據集採用了softmax regression和CNN進行建模。爲了完整性,本文對MNIST數據應用RNN模型求解,具體使用的RNN爲LSTM。github
關於RNN/LSTM的理論知識,能夠參考這篇文章算法
# coding: utf-8 # @author: 陳水平 # @date:2017-02-14 # # In[1]: import tensorflow as tf import numpy as np # In[2]: sess = tf.InteractiveSession() # In[3]: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('mnist/', one_hot=True) # In[4]: learning_rate = 0.001 batch_size = 128 n_input = 28 n_steps = 28 n_hidden = 128 n_classes = 10 x = tf.placeholder(tf.float32, [None, n_steps, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) # In[5]: def RNN(x, weight, biases): # x shape: (batch_size, n_steps, n_input) # desired shape: list of n_steps with element shape (batch_size, n_input) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, n_input]) x = tf.split(0, n_steps, x) outputs = list() lstm = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0) state = (tf.zeros([n_steps, n_hidden]),)*2 sess.run(state) with tf.variable_scope("myrnn2") as scope: for i in range(n_steps-1): if i > 0: scope.reuse_variables() output, state = lstm(x[i], state) outputs.append(output) final = tf.matmul(outputs[-1], weight) + biases return final # In[6]: def RNN(x, n_steps, n_input, n_hidden, n_classes): # Parameters: # Input gate: input, previous output, and bias ix = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) im = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) ib = tf.Variable(tf.zeros([1, n_hidden])) # Forget gate: input, previous output, and bias fx = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) fm = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) fb = tf.Variable(tf.zeros([1, n_hidden])) # Memory cell: input, state, and bias cx = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) cm = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) cb = tf.Variable(tf.zeros([1, n_hidden])) # Output gate: input, previous output, and bias ox = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) om = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) ob = tf.Variable(tf.zeros([1, n_hidden])) # Classifier weights and biases w = tf.Variable(tf.truncated_normal([n_hidden, n_classes])) b = tf.Variable(tf.zeros([n_classes])) # Definition of the cell computation def lstm_cell(i, o, state): input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib) forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb) update = tf.tanh(tf.matmul(i, cx) + tf.matmul(o, cm) + cb) state = forget_gate * state + input_gate * update output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob) return output_gate * tf.tanh(state), state # Unrolled LSTM loop outputs = list() state = tf.Variable(tf.zeros([batch_size, n_hidden])) output = tf.Variable(tf.zeros([batch_size, n_hidden])) # x shape: (batch_size, n_steps, n_input) # desired shape: list of n_steps with element shape (batch_size, n_input) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, n_input]) x = tf.split(0, n_steps, x) for i in x: output, state = lstm_cell(i, output, state) outputs.append(output) logits =tf.matmul(outputs[-1], w) + b return logits # In[7]: pred = RNN(x, n_steps, n_input, n_hidden, n_classes) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initializing the variables init = tf.global_variables_initializer() # In[8]: # Launch the graph sess.run(init) for step in range(20000): batch_x, batch_y = mnist.train.next_batch(batch_size) batch_x = batch_x.reshape((batch_size, n_steps, n_input)) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % 50 == 0: acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print "Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) print "Optimization Finished!" # In[9]: # Calculate accuracy for 128 mnist test images test_len = batch_size test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label})
輸出以下:app
Iter 0, Minibatch Loss= 2.540429, Training Accuracy= 0.07812 Iter 50, Minibatch Loss= 2.423611, Training Accuracy= 0.06250 Iter 100, Minibatch Loss= 2.318830, Training Accuracy= 0.13281 Iter 150, Minibatch Loss= 2.276640, Training Accuracy= 0.13281 Iter 200, Minibatch Loss= 2.276727, Training Accuracy= 0.12500 Iter 250, Minibatch Loss= 2.267064, Training Accuracy= 0.16406 Iter 300, Minibatch Loss= 2.234139, Training Accuracy= 0.19531 Iter 350, Minibatch Loss= 2.295060, Training Accuracy= 0.12500 Iter 400, Minibatch Loss= 2.261856, Training Accuracy= 0.16406 Iter 450, Minibatch Loss= 2.220284, Training Accuracy= 0.17969 Iter 500, Minibatch Loss= 2.276015, Training Accuracy= 0.13281 Iter 550, Minibatch Loss= 2.220499, Training Accuracy= 0.14062 Iter 600, Minibatch Loss= 2.219574, Training Accuracy= 0.11719 Iter 650, Minibatch Loss= 2.189177, Training Accuracy= 0.25781 Iter 700, Minibatch Loss= 2.195167, Training Accuracy= 0.19531 Iter 750, Minibatch Loss= 2.226459, Training Accuracy= 0.18750 Iter 800, Minibatch Loss= 2.148620, Training Accuracy= 0.23438 Iter 850, Minibatch Loss= 2.122925, Training Accuracy= 0.21875 Iter 900, Minibatch Loss= 2.065122, Training Accuracy= 0.24219 ... Iter 19350, Minibatch Loss= 0.001304, Training Accuracy= 1.00000 Iter 19400, Minibatch Loss= 0.000144, Training Accuracy= 1.00000 Iter 19450, Minibatch Loss= 0.000907, Training Accuracy= 1.00000 Iter 19500, Minibatch Loss= 0.002555, Training Accuracy= 1.00000 Iter 19550, Minibatch Loss= 0.002018, Training Accuracy= 1.00000 Iter 19600, Minibatch Loss= 0.000853, Training Accuracy= 1.00000 Iter 19650, Minibatch Loss= 0.001035, Training Accuracy= 1.00000 Iter 19700, Minibatch Loss= 0.007034, Training Accuracy= 0.99219 Iter 19750, Minibatch Loss= 0.000608, Training Accuracy= 1.00000 Iter 19800, Minibatch Loss= 0.002913, Training Accuracy= 1.00000 Iter 19850, Minibatch Loss= 0.003484, Training Accuracy= 1.00000 Iter 19900, Minibatch Loss= 0.005693, Training Accuracy= 1.00000 Iter 19950, Minibatch Loss= 0.001904, Training Accuracy= 1.00000 Optimization Finished! Testing Accuracy: 0.992188