Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.優化
For example, given
s ="leetcode"
,
dict =["leet", "code"]
.spa
Return true because "leetcode"
can be segmented as "leet code"
.code
典型的DP題,dp[i]
表示前i個字符是否可分解成單詞,那麼內存
dp[i] = dp[j] && dict.contains(s.substring(j, i)) (j = 0, 1, ..., i-1, 只要任意一個知足便可);
這道題不推薦用DFS,時間複雜度會很高,worst case達到O(2^n)。leetcode
這道題的Follow up,好比返回全部組合,或者只返回一個解,前者便是LeetCode原題Word Break II, 具體見下文。字符串
time: O(n^2), space: O(n)get
public class Solution { public boolean wordBreak(String s, Set<String> dict) { int len = s.length(); boolean[] dp = new boolean[len + 1]; dp[0] = true; for(int i = 1; i <= len; i++) { for(int j = 0; j < i; j++) { if(dp[j] && dict.contains(s.substring(j, i))) { dp[i] = true; break; } } } return dp[len]; } }
Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each word is a valid dictionary word.string
Return all such possible sentences.io
For example, given
s ="catsanddog"
,
dict =["cat", "cats", "and", "sand", "dog"]
.classA solution is
["cats and dog", "cat sand dog"]
.
若是要返回全部組合的話,咱們能夠考慮兩種方法,一種是DP,時間複雜度較低,可是比較耗內存,意味着對於每一個Index, 咱們可能都要存其對應全部解。另外一種是DFS,空間複雜度較低,可是時間時間複雜度較高,咱們能夠採用memorization優化時間複雜度。
注意DP方法種爲了過OJ上一個edge case, 用Word Break的解法先檢測整個字符串是否可以分解,不能的話就沒有必要繼續算了。
DP: time: O(n^2*k), space: O(nk), 假設k表示平均每一個長度對應解的個數
DFS: time: O(2^n), space: O(n)
public class Solution { public List<String> wordBreak(String s, Set<String> wordDict) { // 判斷是否可以分解 if (!helper(s, wordDict)) { return new ArrayList<String>(); } // 記錄字符串s.substring(0, i)對應的解 HashMap<Integer, List<String>> map = new HashMap<Integer, List<String>>(); map.put(0, new ArrayList<>()); map.get(0).add(""); for (int i = 1; i <= s.length(); i++) { for (int j = 0; j < i; j++) { if (map.containsKey(j) && wordDict.contains(s.substring(j, i))) { if (!map.containsKey(i)) map.put(i, new ArrayList<>()); for (String str : map.get(j)) { map.get(i).add(str + (str.equals("") ? "" : " ") + s.substring(j, i)); } } } } return map.get(s.length()); } private boolean helper(String s, Set<String> wordDict) { boolean dp[] = new boolean[s.length() + 1]; dp[0] = true; for (int i = 1; i <= s.length(); i++) { for (int j = 0; j < i; j++) { if (dp[j] && wordDict.contains(s.substring(j, i))) { dp[i] = true; } } } return dp[s.length()]; } }
public class Solution { public List<String> wordBreak(String s, Set<String> wordDict) { List<String> res = new ArrayList<String>(); // 用來記錄s.substring(i)這個字符串可否分解 boolean[] possible = new boolean[s.length() + 1]; Arrays.fill(possible, true); dfs(res, "", s, wordDict, 0, possible); return res; } public static void dfs(List<String> res, String cur, String s, Set<String> wordDict, int start, boolean[] possible) { if (start == s.length()) { res.add(cur); return; } for (int i = start + 1; i <= s.length(); i++) { String str = s.substring(start, i); if (wordDict.contains(str) && possible[i]) { int prevSize = res.size(); dfs(res, cur + (cur.equals("") ? "" : " ") + str, s, wordDict, i, possible); // DFS後面部分結果沒有變化,說明後面是沒有解的 if (res.size() == prevSize) possible[i] = false; } } } }