JavaShuo
欄目
標籤
高等數學:e的-t平方次方求積分
時間 2021-03-21
標籤
高等數學+線性代數
欄目
應用數學
简体版
原文
原文鏈接
題目 求積分:e的-t平方次方 解答 答案: 在一般的《高等數學》教材中,泊松積分很少會涉及,而在實際問題中,例如在研究熱傳導或是概率問題的時候,都會遇到泊松積分。但由於其被積函數的原函數不是初等函數,因此不能用牛頓-萊布尼茨公式計算其積分值。而一般證明方法比較繁瑣,再次筆者給出集中較爲簡便的證明方法。 1 利用座標變換證明 參考:https://wenku.baidu.com/view/9f4b
>>阅读原文<<
相關文章
1.
高等數學-重積分
2.
【高等數學】P2)不定積分、定積分及其應用、微分方程
3.
使用Python-sympy計算高等數學(多項式求值、求極限、解方程、求積分、微分方程、級數展開、矩陣運算等)
4.
《人話高等數學(一)微積分》
5.
高等數學:二重積分
6.
高等數學積分公式大全
7.
高等數學——積分中值定理
8.
高等數學-不定積分
9.
【高等數學】第 6 講 積分
10.
關於高等數學求解函數極限的方法
更多相關文章...
•
HTTP 請求方法
-
HTTP 教程
•
PHP Secure E-mails
-
PHP教程
•
常用的分佈式事務解決方案
•
適用於PHP初學者的學習線路和建議
相關標籤/搜索
高次方程
次方
平方
高等數學
方方
方數
數學方法
求積分
三次方程
應用數學
MySQL教程
Redis教程
Hibernate教程
初學者
學習路線
數據傳輸
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0備份還原
2.
openstack
3.
深入探討OSPF環路問題
4.
代碼倉庫-分支策略
5.
Admin-Framework(八)系統授權介紹
6.
Sketch教程|如何訪問組件視圖?
7.
問問自己,你真的會用防抖和節流麼????
8.
[圖]微軟Office Access應用終於啓用全新圖標 Publisher已在路上
9.
微軟準備淘汰 SHA-1
10.
微軟準備淘汰 SHA-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
高等數學-重積分
2.
【高等數學】P2)不定積分、定積分及其應用、微分方程
3.
使用Python-sympy計算高等數學(多項式求值、求極限、解方程、求積分、微分方程、級數展開、矩陣運算等)
4.
《人話高等數學(一)微積分》
5.
高等數學:二重積分
6.
高等數學積分公式大全
7.
高等數學——積分中值定理
8.
高等數學-不定積分
9.
【高等數學】第 6 講 積分
10.
關於高等數學求解函數極限的方法
>>更多相關文章<<