版權聲明:本套技術專欄是做者(秦凱新)平時工做的總結和昇華,經過從真實商業環境抽取案例進行總結和分享,並給出商業應用的調優建議和集羣環境容量規劃等內容,請持續關注本套博客。QQ郵箱地址:1120746959@qq.com,若有任何學術交流,可隨時聯繫。dom
數據包含球員和裁判的信息,2012-2013年的比賽數據,總共設計球員2053名,裁判3147名,特徵列表以下:ide
Variable Name: | Variable Description: |
---|---|
playerShort | short player ID |
player | player name |
club | player club |
leagueCountry | country of player club (England, Germany, France, and Spain) |
height | player height (in cm) |
weight | player weight (in kg) |
position | player position |
games | number of games in the player-referee dyad |
goals | number of goals in the player-referee dyad |
yellowCards | number of yellow cards player received from the referee |
yellowReds | number of yellow-red cards player received from the referee |
redCards | number of red cards player received from the referee |
photoID | ID of player photo (if available) |
rater1 | skin rating of photo by rater 1 |
rater2 | skin rating of photo by rater 2 |
refNum | unique referee ID number (referee name removed for anonymizing purposes) |
refCountry | unique referee country ID number |
meanIAT | mean implicit bias score (using the race IAT) for referee country |
nIAT | sample size for race IAT in that particular country |
seIAT | standard error for mean estimate of race IAT |
meanExp | mean explicit bias score (using a racial thermometer task) for referee country |
nExp | sample size for explicit bias in that particular country |
seExp | standard error for mean estimate of explicit bias measure |
數據基本特徵挖掘this
# Uncomment one of the following lines and run the cell:
df = pd.read_csv("redcard.csv.gz", compression='gzip')
df.shape
(146028, 28)
df.head()
複製代碼
df.describe().T
複製代碼
df.dtypesspa
playerShort object
player object
club object
leagueCountry object
birthday object
height float64
weight float64
position object
games int64
victories int64
ties int64
defeats int64
goals int64
yellowCards int64
yellowReds int64
redCards int64
photoID object
rater1 float64
rater2 float64
refNum int64
refCountry int64
Alpha_3 object
meanIAT float64
nIAT float64
seIAT float64
meanExp float64
nExp float64
seExp float64
dtype: object
複製代碼
all_columns = df.columns.tolist()設計
all_columns
['playerShort',
'player',
'club',
'leagueCountry',
'birthday',
'height',
'weight',
'position',
'games',
'victories',
'ties',
'defeats',
'goals',
'yellowCards',
'yellowReds',
'redCards',
'photoID',
'rater1',
'rater2',
'refNum',
'refCountry',
'Alpha_3',
'meanIAT',
'nIAT',
'seIAT',
'meanExp',
'nExp',
'seExp']
複製代碼
df['height'].mean()code
181.93593798236887
複製代碼
df['height'].mean()cdn
181.93593798236887
複製代碼
np.mean(df.groupby('playerShort').height.mean())blog
181.74372848007872
複製代碼
Tidy Dataip
df2 = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
'key2':['one', 'two', 'one', 'two', 'one'],
'data1':np.random.randn(5),
'data2':np.random.randn(5)})
複製代碼
分組聚合ci
grouped = df2['data1'].groupby(df['key1'])
grouped.mean()
key1
a -0.093686
b -0.322711
Name: data1, dtype: float64
player_index = 'playerShort'
player_cols = [#'player', # drop player name, we have unique identifier
'birthday',
'height',
'weight',
'position',
'photoID',
'rater1',
'rater2',
]
all_cols_unique_players = df.groupby(' ').agg({col:'nunique' for col in player_cols})
all_cols_unique_players.head()
複製代碼
all_cols_unique_players[all_cols_unique_players > 1].dropna().shape[0] == 0
True
複製代碼
去重
def get_subgroup(dataframe, g_index, g_columns):
g = dataframe.groupby(g_index).agg({col:'nunique' for col in g_columns})
if g[g > 1].dropna().shape[0] != 0:
print("Warning: you probably assumed this had all unique values but it doesn't.")
return dataframe.groupby(g_index).agg({col:'max' for col in g_columns})
players = get_subgroup(df, player_index, player_cols)
players.head()
複製代碼
未完待續