相信作安卓的不少人都遇到過這方面的問題,什麼是異步消息機制,什麼又是Handler
、Looper
和MessageQueue
,它們之間又有什麼關係?它們是如何協做來保證安卓app的正常運行?它們在開發中具體的使用場景是怎樣的?今天,就讓咱們來揭開這幾個Android異步消息機制中重要角色的神祕面紗。android
爲何要學習Android異步消息機制?和AMS、WMS、View體系同樣,異步消息機制是Android framework層很是重要的知識點,掌握了對於平常開發、問題定位和解決都是很是有幫助的,會使的咱們開發事半功倍。而要想成爲一個合格的Android開發人員,光是懂得調用Android提供的那些個api是不夠的,還要學會分析這些api背後的原理,知道它們是若是工做的,作到知其然亦知其因此然,若是不去學習技術背後的原理,只流於表面,這樣永遠都不會有進步,永遠都只是一個Android菜鳥。git
Android中主線程也就是咱們所說的UI線程,能夠簡單理解爲全部的界面呈現,能看獲得的操做,全部的觸摸、點擊屏幕、更新界面UI事件的處理,都是在主線程中完成的。一個線程只有一條執行路徑,若是主線程同時有多個事件要處理,那麼是怎麼作到有條不紊地處理的呢?接下來,以上提到的幾個角色就要登場了,就是Handler+Looper+MessageQueue
這三個角色在起做用。github
Looper
是線程的消息輪詢器,是整個消息機制的核心,來看看主線程的Looper
是如何建立的。api
主線程開啓於 ActivityThread
的 main
方法中,來看一下 main
方法的源碼。bash
public static void main(String[] args) {
、、、
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
、、、
}複製代碼
Looper.prepareMainLooper()
這句代碼彷佛爲主線程建立 Looper
,進入方法內部一探究竟。微信
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}複製代碼
果真在這個方法內部又調用 Looper.prepare(boolean)
方法爲主線程建立 Looper
對象,存儲在 ThreadLocal
中,咱們都知道,ThreadLocal
爲每一個線程建立一個副本,因此不一樣線程 set
的值不會被覆蓋,再次取出值時對應的是該線程 set
進去的值。接下來經過 Looper.myLooper()
拿到主線程的 Looper
讓Looper
的靜態變量sMainLooper
持有,以後再想取主線程 Looper
經過 Looper.getMainLooper()
拿到併發
public static Looper getMainLooper() {
synchronized (Looper.class) {
return sMainLooper;
}
}複製代碼
這樣,主線程的Looper
就建立成功了,須要注意的是,不管是主線程仍是子線程,Looper
只能被建立一次,不然會拋異常,以上源碼能夠很好地解釋。app
與主線程稍稍有點不同,子線程的Looper
須要手動去建立,而且有些地方是須要注意的,下面讓咱們一塊兒來探究一下。less
子線程建立Looper
標準寫法是這樣的異步
new Thread(new Runnable() {
@Override
public void run() {
//建立子線程的Looper
Looper.prepare();
//開啓消息輪詢
Looper.loop();
}
}).start();複製代碼
須要先建立子線程的Looper
再開啓消息輪詢,不然Looper.loop()
中會拋RuntimeException
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
、、、
}複製代碼
這樣,主線程和子線程的Looper
建立過程咱們都知道了,有了Looper
,咱們就能開啓消息輪詢了嗎?不能,由於Looper
只是消息輪詢器,就比如大廚,還須要食材才能烹飪,所以要想開啓消息輪詢,還須要消息的倉庫,消息隊列MessageQueue
。
咱們看看Looper
的私有構造方法
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}複製代碼
可見在每一個線程建立Looper
的時候也建立了一個MessageQueue
,並將MessageQueue
對象做爲該線程Looper
的成員變量,這就是MessageQueue
的建立過程。
有了Looper
和MessageQueue
以後就能開啓消息輪詢了,很是簡單,經過Looper.loop()
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }複製代碼
在方法中能夠看到有一個for(;;)
死循環,該循環中又調用了MessageQueue
的next()
方法 ,進入方法一探究竟。
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}複製代碼
該方法裏面一樣有一個for(;;)
死循環,當沒有能夠處理該消息的Handler
時,就會一直阻塞
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}複製代碼
若是從MessageQueue
中拿到消息,返回Looper.loop()
中,loop()
有如下片斷
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}複製代碼
能夠很清楚看到Message
是用它所綁定的Handler
來處理的,調用dispatchMessage(Message)
,這個Handler
其實就是發送Message
到MessageQueue
時所用的Handler
,在發送時綁定了。
Handler
拿到消息以後會怎麼處理呢,咱們暫且擱一邊,先來看看Handler
是怎麼建立併發送消息的
能夠繼承於Handler
並重寫handleMessage()
,實現本身處理消息的邏輯
private static class MyHandler extends Handler {
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
}
}複製代碼
簡單地,能夠在程序中這樣建立
MyHandler handler = new MyHandler();複製代碼
須要注意的是,線程建立Handler
實例以前必須先建立Looper
實例,不然會拋RuntimeException
ublic Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}複製代碼
Handler
的消息處理邏輯一樣能夠經過實現Handler
的內部接口Callback
來完成
public interface Callback {
public boolean handleMessage(Message msg);
}複製代碼
Handler handler = new Handler(new Callback() {
@Override
public boolean handleMessage(Message msg) {
//處理消息
return true;
}
});複製代碼
關於這兩種處理消息的方式哪一個優先級更高,接下來會講到
首先能夠經過相似如下的代碼來建立Message
Message message = Message.obtain();
message.arg1 = 1;
message.arg2 = 2;
message.obj = new Object();複製代碼
Handler
發送消息的方式多種多樣,常見有這幾種
sendEmptyMessage(); //發送空消息
sendEmptyMessageAtTime(); //發送按照指定時間處理的空消息
sendEmptyMessageDelayed(); //發送延遲指定時間處理的空消息
sendMessage(); //發送一條消息
sendMessageAtTime(); //發送按照指定時間處理的消息
sendMessageDelayed(); //發送延遲指定時間處理的消息
sendMessageAtFrontOfQueue(); //將消息發送到消息隊頭複製代碼
也能夠在設置Handler
以後,經過message
自身發送消息,不過最終都是調用Handler
發送消息的方法
message.setTarget(handler);
message.sendToTarget();
public void sendToTarget() {
target.sendMessage(this);
}複製代碼
除此以外,還有一種另類的發送方式
post();
postDelayed();
postAtTime();
postAtFrontOfQueue();複製代碼
以post(Runnable r)
爲例,此種方式是經過post
一個Runnable
回調,構形成一個Message
併發送
public final boolean post(Runnable r) {
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}複製代碼
Runnable
回調存儲在Message
的成員變量callback
中,callback
的做用,接下來會講到
以上是消息的發送方式,那麼消息是如何發送到MessageQueue
的呢,再來看
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}複製代碼
全部的消息發送方式最終都是調用 Handler
的 sendMessageAtTime()
,而且會檢查消息隊列是否爲空,若空則拋 RuntimeException
,以後調用 Handler
的 enqueueMessage()
,最後調用MessageQueue
的 enqueueMessage()
將消息入隊。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }複製代碼
該方法根據消息的處理時間來對消息進行排序,最終肯定哪一個消息先被處理
至此,咱們已經很清楚消息的建立和發送以及消息輪詢過程了,最後來看看消息是怎麼被處理的
回到Looper.loop()
中的這一句代碼
msg.target.dispatchMessage(msg);複製代碼
消息被它所綁定的Handler
的dispatchMessage()
處理了
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}複製代碼
因而可知,消息處理到底採用哪一種方式,是有優先級區分的
首先是post
方法發送的消息,會調用Message
中的callback
,也就是Runnable
的run()
來處理
private static void handleCallback(Message message) {
message.callback.run();
}複製代碼
其次則是看Handler
在建立時有沒有實現Callback
回調接口,如有,則調用
mCallback.handleMessage(msg)複製代碼
若是該方法沒能力處理,則返回false
,讓給接下來處理
最後纔是調用Handler
的handleMessage()
Looper
,再有MessageQueue
,最後纔是Handler
。Handler
,這些Handler
不管在哪裏發送消息,最終都會在建立其的線程中處理消息,AsyncTask
、HandlerThread
等等都用到了異步消息機制。最後借用一張圖說明Android異步消息機制
至此,Android 異步消息機制就講解完畢了,有木有一種醍醐灌頂的感受,哈哈~~~~,這篇文章涉及到的源碼不難,很是好理解,關鍵仍是要本身去閱讀源碼,理解其原理,作到知其然亦知其因此然,這個道理對於大部分領域的學習都適用吧,要知道,Android發展到如今,技術愈來愈成熟,早已不是那個寫幾個界面就能拿高薪的時代了,市場對於Android 工程師的要求愈來愈高,這也提醒着咱們要跟上技術發展的步伐,時刻學習,避免被淘汰。
因爲水平有限,文章可能會有很多紕漏,還請讀者可以指正,Android SDK 源碼的廣度和深度也不是小小篇幅可以歸納的,未能盡述之處,還請多多包涵。
歡迎關注我的微信公衆號:Charming寫字的地方
CSDN:blog.csdn.net/charmingwon…
簡書:www.jianshu.com/u/05686c7c9…
掘金:juejin.im/user/59924e…
Github主頁:charmingw.github.io/
歡迎轉載~~~