題庫連接php
有 \(2^n\) 個集合,每一個集合只包含 \([1,n]\) ,且這些集合兩兩不一樣。問有多少種選擇方法(至少選一個),使得這些集合交集大小爲 \(k\) 。c++
\(0\leq k\leq n\leq 1000000\)ui
設 \(f(n)\) 爲交集元素大於 \(k\) 的方案數,設 \(g(n)\) 爲交集元素等於 \(k\) 的方案數。spa
容易獲得code
\[f(k)=\sum_{i=k}^n{i\choose k}g(i)\Rightarrow g(k)=\sum_{i=k}^n(-1)^{i-k}{i\choose k}f(i)\]ip
而且 \(f(i)={n\choose i}2^{2^{n-i}}\) 。get
直接求就行了。it
#include <bits/stdc++.h> using namespace std; const int N = 1000000+5, yzh = 1000000007; int n, k, ifac[N], fac[N], ans; int quick_pow(int a, int b, int p) { int ans = 1; while (b) { if (b&1) ans = 1ll*ans*a%p; b >>= 1, a = 1ll*a*a%p; } return ans; } int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; } void work() { scanf("%d%d", &n, &k); fac[0] = fac[1] = ifac[0] = ifac[1] = 1; for (int i = 2; i <= n; i++) ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh; for (int i = 2; i <= n; i++) fac[i] = 1ll*fac[i-1]*i%yzh, ifac[i] = 1ll*ifac[i]*ifac[i-1]%yzh; for (int i = k; i <= n; i++) if ((i-k)&1) (ans -= 1ll*C(i, k)*C(n, i)%yzh*quick_pow(2, quick_pow(2, n-i, yzh-1), yzh)%yzh) %= yzh; else (ans += 1ll*C(i, k)*C(n, i)%yzh*quick_pow(2, quick_pow(2, n-i, yzh-1), yzh)%yzh) %= yzh; printf("%d\n", (ans+yzh)%yzh); } int main() {work(); return 0; }