基於R語言實現SVM

library(lattice)
xyplot(Petal.Length ~ Petal.Width, data = iris, groups = Species,  
+ auto.key=list(corner=c(1,0)))

 

data("iris")
attach(iris)
subdata<-iris[iris$Species != 'virginica',]
subdata$Species<-factor(subdata$Species)
library(e1071)
model1<-svm(Species ~ Petal.Length+Petal.Width,data=subdata)
plot(model1, subdata, Petal.Length ~ Petal.Width)

  

 

> model2 <- svm(Species ~ ., data = iris)  
> summary(model2)

Call:
svm(formula = Species ~ ., data = iris)


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  1 
      gamma:  0.25 

Number of Support Vectors:  51

 ( 8 22 21 )


Number of Classes:  3 

Levels: 
 setosa versicolor virginica

  

> x= iris[,5]
> x= iris[,-5]
> y= iris[,5]
> model3 = svm(x,y,kernel="radial",gamma = if(is.vector(x)) 1 else 1/ncol(x))
> pred<-predict(model3,x)
> table(pred,y)
            y
pred         setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         48         2
  virginica       0          2        48
> pred<-predict(model3,x,decision.values = TRUE)
> attr(pred,"decision.values")[1:4,]
  setosa/versicolor setosa/virginica versicolor/virginica
1          1.196152         1.091757            0.6708810
2          1.064621         1.056185            0.8483518
3          1.180842         1.074542            0.6439798
4          1.110699         1.053012            0.6782041
> attr(pred,"decision.values")[77:78,]
   setosa/versicolor setosa/virginica versicolor/virginica
77         -1.023056        -0.892961           0.82644637
78         -1.099844        -1.034654          -0.03459913
> pred[77:78]
        77         78 
versicolor  virginica 
Levels: setosa versicolor virginica

 

> plot(cmdscale(dist(iris[,-5])),  
+ col = c("orange","blue","green")[as.integer(iris[,5])],  
+ pch = c("o","+")[1:150 %in% model3$index + 1])  
> legend(1.8, -0.8, c("setosa","versicolor","virgincia"),  
+ col = c("orange","blue","green"), lty = 1)  

相關文章
相關標籤/搜索