div2 D. Extreme Subtraction

codeforces 1443 problem D
題目連接
題目大意:給你一個長度爲n序列,你能夠進行無數次操做,讓前k個數減一或讓後k個數減一,1<=k<=n,問是否能把這整個序列變爲0序列,
我是傻逼,沒有初始化,太菜了,比賽的時候沒有作出來QAQ
寫題時要找好清晰的思路
8
252 210 750 818 640 868 700 777
首先能夠肯定,若是一個數能被減少,他能減小的數值必定不會超過他以前能被減小的數值
好比上面那個例子,750絕對不可能變成比540還小的數,若是繼續變的話第二個數就會變成負數
第二,他被減完後的數必定是要大於前面的數的,否則從後往前減的時候,前面那個數就不會變成0
好比818->608以後,640->430,在從後往前篩時608這個數是必定不能變爲0的,因此640只能變爲608
因此咱們發現接下來的數最多也就只能減32的因此能被減的數是不斷變小的
若是通過從前日後篩和從後往前篩都不能讓這個序列變爲0,那麼這個序列就是很差的,不然就是好的











spa

#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
const int maxn=2e6+10;
#define inf 9999969
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define fep(i,a,b) for(int i=b;i>=a;--i)
#define scf(x) scanf("%lld",&x)
#define prf(x) printf("%lld\n",x)
#define deprf(x) printf("[%lld]\n",x)
#define mymset(x,y) memset(x,y,sizeof(x))
const int mod=9901;
using namespace std;
ll a[maxn];
int main()
{ 
	ll t,n;
	scf(t);
	while(t--)
	{ 
		scf(n);
		rep(i,1,n)scf(a[i]);
		ll lala=a[1];//這個lala存的是改變前和改變後的最小差值 
		a[0]=0,a[n+1]=0;
		rep(i,1,n)
		{ 
			ll p=a[i];
			if(a[i])a[i]=max(max(0LL,min(a[i-1],a[i])),a[i]-lala);//改變後不能超過前面的數
																//且不能小於0
			else break;									//若是能減最大隻能減前面的最小差值
			if(p==a[i])break;//若是這個數沒有發生改變證實接下來的數也就不能被減了
			lala=min(lala,p-a[i]);//更新最小差值
		}
		
		lala=a[n];
		fep(i,1,n)//從後往前跟從前日後是同樣的
		{ 
			ll  p=a[i];
			if(a[i])a[i]=max(max(0LL,min(a[i+1],a[i])),a[i]-lala);
			else break;
			if(p==a[i])break;
			lala=min(lala,p-a[i]);
		}
		int f=0;//答案標記
		rep(i,1,n)if(a[i])f=1;//查看是否有數不爲0
		if(f)printf("NO\n");
		else printf("YES\n");
	}
	return 0;
}
相關文章
相關標籤/搜索