題目連接:http://acm.hdu.edu.cn/showproblem.php?pid=4324php
Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3858 Accepted Submission(s): 1516
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a 「Triangle Love」 among N people. 「Triangle Love」 means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a 「Triangle Love」.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). A
i,j = 1 means i-th people loves j-th people, otherwise A
i,j = 0.
It is guaranteed that the given relationship is a tournament, that is, A
i,i= 0, A
i,j ≠ A
j,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print 「Yes」, if there is a 「Triangle Love」 among these N people, otherwise print 「No」.
Take the sample output for more details.
Sample Input
2
5
00100
10000
01001
11101
11000
5
01111
00000
01000
01100
01110
Sample Output
Author
BJTU
Source
題目大意:給一個n*n的矩陣,Map[i][j]表示i喜歡j;在這個矩陣表示的範圍內,找到是否存在三角戀的關係。
解題思路:作的第一道拓撲排序判環題目。判斷其中是否有環就能夠了,若是存在環必然存在三元環(這個是根據這道題目得出的結論)。
先介紹一下拓撲排序:對一個
有向無環圖(Directed Acyclic Graph簡稱DAG)G進行拓撲排序,是將G中全部頂點排成一個線性序列,使得圖中任意一對頂點u和v,若邊(u,v)∈E(G),則u在線性序列中出如今v以前。簡單的說,由某個集合上的一個
偏序獲得該集合上的一個
全序,這個操做稱之爲拓撲排序。
再通俗一點就是,一個點一個點的去刪除,刪掉的必須是入度爲0的,若是將入度爲0的所有刪完,還有剩餘邊的話就會產生死鎖,其中必存在環。
詳見代碼。
1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4
5 using namespace std;
6
7 int indir[2010];//用來表示入度
8 char Map[2010][2010];//存儲的是i,j兩個節點的關係,1:i love j,0:j love i
9
10 int main()
11 {
12 int t;
13 scanf("%d",&t);
14 int ff=1;
15 while (t--)
16 {
17 memset(indir,0,sizeof(indir));
18 int flag=0;
19 int n;
20 scanf("%d",&n);
21 for (int i=0; i<n; i++)
22 {
23 scanf("%s",Map[i]);
24 for (int j=0; j<n; j++)
25 {
26 if (Map[i][j]=='1')//i love j,也就是i指向j
27 indir[j]++;//j的入度++
28 }
29 }
30 int j;
31 for (int i=0; i<n; i++)
32 {
33 for (j=0; j<n; j++)
34 if (indir[j]==0)
35 break;
36 if (j==n)//若是所有找完都沒有發現入度爲0的必存在環。
37 {
38 flag=1;
39 break;
40 }
41 else
42 {
43 indir[j]--;//j的入度刪掉
44 for (int k=0;k<n;k++)//j指向的點刪掉
45 {
46 if (Map[j][k]=='1')
47 {
48 indir[k]--;
49 }
50 }
51 }
52 }
53 if (flag==1)
54 printf ("Case #%d: Yes\n",ff++);
55 else
56 printf ("Case #%d: No\n",ff++);
57 }
58 }