Python擁有一些內置的數據類型,好比str, int, list, tuple, dict等, collections模塊在這些內置數據類型的基礎上,提供了幾個額外的數據類型:
1.Counter: 計數器,主要用來計數
2.OrderedDict: 有序字典
3.defaultdict: 帶有默認值的字典
4.namedtuple(): 可命名元組,生成可使用名字來訪問元素內容的tuple子類
5.deque: 雙端隊列,能夠快速的從另一側追加和推出對象html
1、Counter: 計數器node
Counter是對字典類型的補充,用於追蹤值的出現次數。 ps:具有字典的全部功能 + 本身的功能python
######################################################################## ### Counter ######################################################################## class Counter(dict): '''Dict subclass for counting hashable items. Sometimes called a bag or multiset. Elements are stored as dictionary keys and their counts are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements [('a', 5), ('b', 4), ('c', 3)] >>> sorted(c) # list all unique elements ['a', 'b', 'c', 'd', 'e'] >>> ''.join(sorted(c.elements())) # list elements with repetitions 'aaaaabbbbcccdde' >>> sum(c.values()) # total of all counts >>> c['a'] # count of letter 'a' >>> for elem in 'shazam': # update counts from an iterable ... c[elem] += 1 # by adding 1 to each element's count >>> c['a'] # now there are seven 'a' >>> del c['b'] # remove all 'b' >>> c['b'] # now there are zero 'b' >>> d = Counter('simsalabim') # make another counter >>> c.update(d) # add in the second counter >>> c['a'] # now there are nine 'a' >>> c.clear() # empty the counter >>> c Counter() Note: If a count is set to zero or reduced to zero, it will remain in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc') >>> c['b'] -= 2 # reduce the count of 'b' by two >>> c.most_common() # 'b' is still in, but its count is zero [('a', 3), ('c', 1), ('b', 0)] ''' # References: # http://en.wikipedia.org/wiki/Multiset # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm # http://code.activestate.com/recipes/259174/ # Knuth, TAOCP Vol. II section 4.6.3 def __init__(self, iterable=None, **kwds): '''Create a new, empty Counter object. And if given, count elements from an input iterable. Or, initialize the count from another mapping of elements to their counts. >>> c = Counter() # a new, empty counter >>> c = Counter('gallahad') # a new counter from an iterable >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping >>> c = Counter(a=4, b=2) # a new counter from keyword args ''' super(Counter, self).__init__() self.update(iterable, **kwds) def __missing__(self, key): """ 對於不存在的元素,返回計數器爲0 """ 'The count of elements not in the Counter is zero.' # Needed so that self[missing_item] does not raise KeyError return 0 def most_common(self, n=None): """ 數量從大到寫排列,獲取前N個元素 """ '''List the n most common elements and their counts from the most common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3) [('a', 5), ('b', 4), ('c', 3)] ''' # Emulate Bag.sortedByCount from Smalltalk if n is None: return sorted(self.iteritems(), key=_itemgetter(1), reverse=True) return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) def elements(self): """ 計數器中的全部元素,注:此處非全部元素集合,而是包含全部元素集合的迭代器 """ '''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC') >>> sorted(c.elements()) ['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) >>> product = 1 >>> for factor in prime_factors.elements(): # loop over factors ... product *= factor # and multiply them >>> product Note, if an element's count has been set to zero or is a negative number, elements() will ignore it. ''' # Emulate Bag.do from Smalltalk and Multiset.begin from C++. return _chain.from_iterable(_starmap(_repeat, self.iteritems())) # Override dict methods where necessary @classmethod def fromkeys(cls, iterable, v=None): # There is no equivalent method for counters because setting v=1 # means that no element can have a count greater than one. raise NotImplementedError( 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds): """ 更新計數器,其實就是增長;若是原來沒有,則新建,若是有則加一 """ '''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.update('witch') # add elements from another iterable >>> d = Counter('watch') >>> c.update(d) # add elements from another counter >>> c['h'] # four 'h' in which, witch, and watch ''' # The regular dict.update() operation makes no sense here because the # replace behavior results in the some of original untouched counts # being mixed-in with all of the other counts for a mismash that # doesn't have a straight-forward interpretation in most counting # contexts. Instead, we implement straight-addition. Both the inputs # and outputs are allowed to contain zero and negative counts. if iterable is not None: if isinstance(iterable, Mapping): if self: self_get = self.get for elem, count in iterable.iteritems(): self[elem] = self_get(elem, 0) + count else: super(Counter, self).update(iterable) # fast path when counter is empty else: self_get = self.get for elem in iterable: self[elem] = self_get(elem, 0) + 1 if kwds: self.update(kwds) def subtract(self, iterable=None, **kwds): """ 相減,原來的計數器中的每個元素的數量減去後添加的元素的數量 """ '''Like dict.update() but subtracts counts instead of replacing them. Counts can be reduced below zero. Both the inputs and outputs are allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.subtract('witch') # subtract elements from another iterable >>> c.subtract(Counter('watch')) # subtract elements from another counter >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch -1 ''' if iterable is not None: self_get = self.get if isinstance(iterable, Mapping): for elem, count in iterable.items(): self[elem] = self_get(elem, 0) - count else: for elem in iterable: self[elem] = self_get(elem, 0) - 1 if kwds: self.subtract(kwds) def copy(self): """ 拷貝 """ 'Return a shallow copy.' return self.__class__(self) def __reduce__(self): """ 返回一個元組(類型,元組) """ return self.__class__, (dict(self),) def __delitem__(self, elem): """ 刪除元素 """ 'Like dict.__delitem__() but does not raise KeyError for missing values.' if elem in self: super(Counter, self).__delitem__(elem) def __repr__(self): if not self: return '%s()' % self.__class__.__name__ items = ', '.join(map('%r: %r'.__mod__, self.most_common())) return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in: # Knuth TAOCP Volume II section 4.6.3 exercise 19 # and at http://en.wikipedia.org/wiki/Multiset # # Outputs guaranteed to only include positive counts. # # To strip negative and zero counts, add-in an empty counter: # c += Counter() def __add__(self, other): '''Add counts from two counters. >>> Counter('abbb') + Counter('bcc') Counter({'b': 4, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): newcount = count + other[elem] if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count > 0: result[elem] = count return result def __sub__(self, other): ''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd') Counter({'b': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): newcount = count - other[elem] if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count < 0: result[elem] = 0 - count return result def __or__(self, other): '''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc') Counter({'b': 3, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): other_count = other[elem] newcount = other_count if count < other_count else count if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count > 0: result[elem] = count return result def __and__(self, other): ''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc') Counter({'b': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): other_count = other[elem] newcount = count if count < other_count else other_count if newcount > 0: result[elem] = newcount return result Counter
import collections # 先導入模塊才能使用Conuter c=collections.Counter('afafaefaefaefaesfefaseg') # 記住Counter C大寫 print(c)
輸出
Counter({'a': 7, 'f': 7, 'e': 6, 's': 2, 'g': 1}) #將輸入的字符以字典的形式顯示出來(但不是字典,前面有個Counter),展示出每一個字符出現的次數 web
一、 most_common(self, n=None) 數量從大到寫排列,獲取前N個元素數據結構
import collections c=collections.Counter('afafaefaefaefaesfefaseg') c1=c.most_common(2) print(c) print(c1)
輸出app
Counter({'a': 7, 'f': 7, 'e': 6, 's': 2, 'g': 1})
[('a', 7), ('f', 7)]python2.7
二、elements(self)計數器中的全部元素,注:此處非全部元素集合,而是包含全部元素集合的迭代器ide
import collections c=collections.Counter('afafaefaefaefaesfefaseg') c1=c.elements() print(c) print(c1)
輸出oop
Counter({'a': 7, 'f': 7, 'e': 6, 's': 2, 'g': 1})
<itertools.chain object at 0x002F4690>post
import collections c=collections.Counter('afafaefaefaefaesfefaseg') for k,v in c.items(): print(k,v)
輸出
a 7
f 7
e 6
s 2
g 1
三、update(self, iterable=None, **kwds) 更新計數器,其實就是增長;若是原來沒有,則新建,若是有則加1
import collections c=collections.Counter(['11','22','33','78','11']) print(c) c.update(['22','11','calos']) print(c)
輸出
Counter({'11': 2, '22': 1, '33': 1, '78': 1})
Counter({'11': 3, '22': 2, '33': 1, '78': 1, 'calos': 1})
四、subtract(self, iterable=None, **kwds) 相減,原來的計數器中的每個元素的數量減去後添加的元素的數量
import collections c=collections.Counter(['11','22','33','78','11']) print(c) c.subtract(['22','11','calos']) print(c)
輸出
Counter({'11': 2, '22': 1, '33': 1, '78': 1})
Counter({'11': 1, '33': 1, '78': 1, '22': 0, 'calos': -1})
2、OrderedDict: 有序字典
在Python中,dict這個數據結構因爲hash的特性,是無序的,這在有的時候會給咱們帶來一些麻煩, 幸運的是,collections模塊爲咱們提供了OrderedDict,當你要得到一個有序的字典對象時,用它就對了。
class OrderedDict(dict): 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as regular dictionaries. # The internal self.__map dict maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # The sentinel is in self.__hardroot with a weakref proxy in self.__root. # The prev links are weakref proxies (to prevent circular references). # Individual links are kept alive by the hard reference in self.__map. # Those hard references disappear when a key is deleted from an OrderedDict. def __init__(*args, **kwds): '''Initialize an ordered dictionary. The signature is the same as regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if not args: raise TypeError("descriptor '__init__' of 'OrderedDict' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__hardroot = _Link() self.__root = root = _proxy(self.__hardroot) root.prev = root.next = root self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link at the end of the linked list, # and the inherited dictionary is updated with the new key/value pair. if key not in self: self.__map[key] = link = Link() root = self.__root last = root.prev link.prev, link.next, link.key = last, root, key last.next = link root.prev = proxy(link) dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which gets # removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link = self.__map.pop(key) link_prev = link.prev link_next = link.next link_prev.next = link_next link_next.prev = link_prev link.prev = None link.next = None def __iter__(self): 'od.__iter__() <==> iter(od)' # Traverse the linked list in order. root = self.__root curr = root.next while curr is not root: yield curr.key curr = curr.next def __reversed__(self): 'od.__reversed__() <==> reversed(od)' # Traverse the linked list in reverse order. root = self.__root curr = root.prev while curr is not root: yield curr.key curr = curr.prev def clear(self): 'od.clear() -> None. Remove all items from od.' root = self.__root root.prev = root.next = root self.__map.clear() dict.clear(self) def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') root = self.__root if last: link = root.prev link_prev = link.prev link_prev.next = root root.prev = link_prev else: link = root.next link_next = link.next root.next = link_next link_next.prev = root key = link.key del self.__map[key] value = dict.pop(self, key) return key, value def move_to_end(self, key, last=True): '''Move an existing element to the end (or beginning if last==False). Raises KeyError if the element does not exist. When last=True, acts like a fast version of self[key]=self.pop(key). ''' link = self.__map[key] link_prev = link.prev link_next = link.next soft_link = link_next.prev link_prev.next = link_next link_next.prev = link_prev root = self.__root if last: last = root.prev link.prev = last link.next = root root.prev = soft_link last.next = link else: first = root.next link.prev = root link.next = first first.prev = soft_link root.next = link def __sizeof__(self): sizeof = _sys.getsizeof n = len(self) + 1 # number of links including root size = sizeof(self.__dict__) # instance dictionary size += sizeof(self.__map) * 2 # internal dict and inherited dict size += sizeof(self.__hardroot) * n # link objects size += sizeof(self.__root) * n # proxy objects return size update = __update = MutableMapping.update def keys(self): "D.keys() -> a set-like object providing a view on D's keys" return _OrderedDictKeysView(self) def items(self): "D.items() -> a set-like object providing a view on D's items" return _OrderedDictItemsView(self) def values(self): "D.values() -> an object providing a view on D's values" return _OrderedDictValuesView(self) __ne__ = MutableMapping.__ne__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default @_recursive_repr() def __repr__(self): 'od.__repr__() <==> repr(od)' if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.items())) def __reduce__(self): 'Return state information for pickling' inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) return self.__class__, (), inst_dict or None, None, iter(self.items()) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. If not specified, the value defaults to None. ''' self = cls() for key in iterable: self[key] = value return self def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return dict.__eq__(self, other) and all(map(_eq, self, other)) return dict.__eq__(self, other) try: from _collections import OrderedDict except ImportError: # Leave the pure Python version in place. pass
import collections c=collections.OrderedDict() #輸出字典定是有序的 c['k1']='v1' c['k2']='v2' c['k3']='v3' print(c)
輸出
OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
import collections c=dict() # 生成字典是無序的 c['k1']='v1' c['k2']='v2' c['k3']='v3' print(c)
輸出
{'k3': 'v3', 'k2': 'v2', 'k1': 'v1'}
有序字典裏面的方法和字典裏面的方法大體同樣(有序字典裏面全部的操做都是按順序取或刪除)。
1. move_to_end(self, key, last=True) 將指定的key 移動至最後
import collections c=collections.OrderedDict() c['k1']='v1' c['k2']='v2' c['k3']='v3' print(c) c.move_to_end('k2') print(c)
輸出
OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
OrderedDict([('k1', 'v1'), ('k3', 'v3'), ('k2', 'v2')])
2. popitem(self, last=True) 從最後一個元素中取值,後進先出 ‘棧’
import collections c=collections.OrderedDict() c['k1']='v1' c['k2']='v2' c['k3']='v3' print(c) result=c.popitem() print(c) print(result)
輸出
OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
OrderedDict([('k1', 'v1'), ('k2', 'v2')])
('k3', 'v3')
pop(self, key, default=__marker) 指定取哪個,並有返回值values
import collections c=collections.OrderedDict() c['k1']='v1' c['k2']='v2' c['k3']='v3' print(c) result=c.pop('k2') print(c) print(result)
輸出
OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
OrderedDict([('k1', 'v1'), ('k3', 'v3')])
v2
3、默認字典(defaultdict)
即爲字典中的values設置一個默認類型:defaultdict的參數默認是dict,也可爲list,tuple
class defaultdict(dict): """ defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce a new value when a key is not present, in __getitem__ only. A defaultdict compares equal to a dict with the same items. All remaining arguments are treated the same as if they were passed to the dict constructor, including keyword arguments. """ def copy(self): # real signature unknown; restored from __doc__ """ D.copy() -> a shallow copy of D. """ pass def __copy__(self, *args, **kwargs): # real signature unknown """ D.copy() -> a shallow copy of D. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__ """ defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce a new value when a key is not present, in __getitem__ only. A defaultdict compares equal to a dict with the same items. All remaining arguments are treated the same as if they were passed to the dict constructor, including keyword arguments. # (copied from class doc) """ pass def __missing__(self, key): # real signature unknown; restored from __doc__ """ __missing__(key) # Called by __getitem__ for missing key; pseudo-code: if self.default_factory is None: raise KeyError((key,)) self[key] = value = self.default_factory() return value """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Factory for default value called by __missing__()."""
原始字典若是value沒有值的時候,append是沒法使用的,由於append是list的方法,因此定義字典爲列表就能夠了,以下
dic={'k1':[]} dic['k1'].append('carlos') print(dic)
輸出
{'k1': ['carlos']}
使用defaultdict直接設置一個默認類型,能夠直接使用append
import collections dic=collections.defaultdict(list) dic['k1'].append('carlos') print(dic)
輸出
defaultdict(<class 'list'>, {'k1': ['carlos']})
舉例:「11, 22, 33, 44, 55, 66, 77, 88, 99, 90」 將以上大於66的放進一個集合,小於66放進一個集合
①原實現辦法
values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90] mydic = {} for value in values: if value > 66: if 'k1' in mydic: #python2.7中有個.has_key的方法。在3.0之後版本中被廢除,用in來替代。python2.7用法:if my_dict.has_key('k1') mydic['k1'].append(value) else: mydic['k1'] = [value] else: if 'k2' in mydic: mydic['k2'].append(value) else: mydic['k2'] = [value] print(mydic)
輸出
{'k2': [11, 22, 33, 44, 55, 66], 'k1': [77, 88, 99, 90]}
②使用defaultdict實現辦法,精簡語句
from collections import defaultdict values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90] mydict = defaultdict(list) for value in values:# v始終都是my_dict中的values,而defaultdict(list)後咱們對於keys的指定對比上例就方便不少。不用再作一層if判斷了。 if value > 66: mydict['k1'].append(value) else: mydict['k2'].append(value) print(mydict)
輸出
defaultdict(<class 'list'>, {'k2': [11, 22, 33, 44, 55, 66], 'k1': [77, 88, 99, 90]})
4、namedtuple(): 可命名元組
namedtuple主要用來產生可使用名稱來訪問元素的數據對象,一般用來加強代碼的可讀性, 在訪問一些tuple類型的數據時尤爲好用。
元組訪問只能經過索引去訪問
命名訪問能夠經過名字去訪問
使用collections模塊中的namedtuple方法能夠給每一個元素起別名,經過名稱調用的方式來獲取值使用。而普通元組的方法必須經過下標的方式來取值。
建立一個本身的可擴展tuple的類(包含tuple全部功能以及其餘功能的類型),在根據類建立對象,而後調用對象最長用於座標,普通的元組相似於列表以index編號來訪問,而自定義可擴展的能夠相似於字典的keys進行訪問。
import collections mytuple=collections.namedtuple('mytuple',['x','y','z']) #建立類 a=mytuple(3,8,9) #建立對象,賦值給變量a print(a) # 賦值x=3, y=8, z=9
輸出mytuple(x=3, y=8, z=9)
mytuple=(3,8,9) print(mytuple) print(mytuple[0],mytuple[1],mytuple[2])
輸出
(3, 8, 9)
3 8 9
查看一下這個類的方法 print(help(mytuple))
Help on tuple object: class tuple(object) | tuple() -> empty tuple | tuple(iterable) -> tuple initialized from iterable's items | | If the argument is a tuple, the return value is the same object. | | Methods defined here: | | __add__(self, value, /) | Return self+value. | | __contains__(self, key, /) | Return key in self. | | __eq__(self, value, /) | Return self==value. | | __ge__(self, value, /) | Return self>=value. | | __getattribute__(self, name, /) | Return getattr(self, name). | | __getitem__(self, key, /) | Return self[key]. | | __getnewargs__(...) | | __gt__(self, value, /) | Return self>value. | | __hash__(self, /) | Return hash(self). | | __iter__(self, /) | Implement iter(self). | | __le__(self, value, /) | Return self<=value. | | __len__(self, /) | Return len(self). | | __lt__(self, value, /) | Return self<value. | | __mul__(self, value, /) | Return self*value.n | | __ne__(self, value, /) | Return self!=value. | | __new__(*args, **kwargs) from builtins.type | Create and return a new object. See help(type) for accurate signature. | | __repr__(self, /) | Return repr(self). | | __rmul__(self, value, /) | Return self*value. | | count(...) | T.count(value) -> integer -- return number of occurrences of value | | index(...) | T.index(value, [start, [stop]]) -> integer -- return first index of value. | Raises ValueError if the value is not present.
舉例子:
from collections import namedtuple # 經過from import的方式直接調用collections模塊中namedtuple這個方法。而import collections是導入這個模塊中全部的方法。這種調用在使用時必須collections.namedtuple的方式來使用。 websites = [ ('Sohu', 'http://www.google.com/', u'liupeng'), ('Sina', 'http://www.sina.com.cn/', u'tony'), ('163', 'http://www.163.com/', u'jack')] # 假設咱們有一個列表,列表中有三個元組,每一個元組中的元素都是不一樣格式的字符串 Website = namedtuple('Website_list', ['name', 'url','founder']) # 經過調用namedtuple,來設置一個列表'Website_list'是這個列表的別名.而['name','url','founder']的命名是分別爲了分配給大列表websites中哥哥元組中的各個元素的。 for i in websites: # for循環websites這個大列表,這裏的i循環得出的結果是這個大列表中每一個元組 x = Website._make(i)# 從已經存在迭代對象或者序列生成一個新的命名元組。 Website是namedtuple('Website_list', ['name', 'url', 'founder'])的內容,._make(i)是websites各個元組的內容,把這兩個元組重組成新的元組。 print(x) # x打印結果以下,生成了新的命名元組。是使用了namedtuple中._make的方法生成的。
輸出
Website_list(name='Sohu', url='http://www.google.com/', founder='liupeng')
Website_list(name='Sina', url='http://www.sina.com.cn/', founder='tony')
Website_list(name='163', url='http://www.163.com/', founder='jack')
5、deque
deque實際上是 double-ended queue 的縮寫,翻譯過來就是雙端隊列/雙向隊列。
隊列分兩種:
一、單向隊列(先進先出)
import queue
queue.Queue
class Queue: '''Create a queue object with a given maximum size. If maxsize is <= 0, the queue size is infinite. ''' def __init__(self, maxsize=0): self.maxsize = maxsize self._init(maxsize) # mutex must be held whenever the queue is mutating. All methods # that acquire mutex must release it before returning. mutex # is shared between the three conditions, so acquiring and # releasing the conditions also acquires and releases mutex. self.mutex = threading.Lock() # Notify not_empty whenever an item is added to the queue; a # thread waiting to get is notified then. self.not_empty = threading.Condition(self.mutex) # Notify not_full whenever an item is removed from the queue; # a thread waiting to put is notified then. self.not_full = threading.Condition(self.mutex) # Notify all_tasks_done whenever the number of unfinished tasks # drops to zero; thread waiting to join() is notified to resume self.all_tasks_done = threading.Condition(self.mutex) self.unfinished_tasks = 0 def task_done(self): '''Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete. If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue). Raises a ValueError if called more times than there were items placed in the queue. ''' with self.all_tasks_done: unfinished = self.unfinished_tasks - 1 if unfinished <= 0: if unfinished < 0: raise ValueError('task_done() called too many times') self.all_tasks_done.notify_all() self.unfinished_tasks = unfinished def join(self): '''Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls task_done() to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks. ''' with self.all_tasks_done: while self.unfinished_tasks: self.all_tasks_done.wait() def qsize(self): '''Return the approximate size of the queue (not reliable!).''' with self.mutex: return self._qsize() def empty(self): '''Return True if the queue is empty, False otherwise (not reliable!). This method is likely to be removed at some point. Use qsize() == 0 as a direct substitute, but be aware that either approach risks a race condition where a queue can grow before the result of empty() or qsize() can be used. To create code that needs to wait for all queued tasks to be completed, the preferred technique is to use the join() method. ''' with self.mutex: return not self._qsize() def full(self): '''Return True if the queue is full, False otherwise (not reliable!). This method is likely to be removed at some point. Use qsize() >= n as a direct substitute, but be aware that either approach risks a race condition where a queue can shrink before the result of full() or qsize() can be used. ''' with self.mutex: return 0 < self.maxsize <= self._qsize() def put(self, item, block=True, timeout=None): '''Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default), block if necessary until a free slot is available. If 'timeout' is a non-negative number, it blocks at most 'timeout' seconds and raises the Full exception if no free slot was available within that time. Otherwise ('block' is false), put an item on the queue if a free slot is immediately available, else raise the Full exception ('timeout' is ignored in that case). ''' with self.not_full: if self.maxsize > 0: if not block: if self._qsize() >= self.maxsize: raise Full elif timeout is None: while self._qsize() >= self.maxsize: self.not_full.wait() elif timeout < 0: raise ValueError("'timeout' must be a non-negative number") else: endtime = time() + timeout while self._qsize() >= self.maxsize: remaining = endtime - time() if remaining <= 0.0: raise Full self.not_full.wait(remaining) self._put(item) self.unfinished_tasks += 1 self.not_empty.notify() def get(self, block=True, timeout=None): '''Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default), block if necessary until an item is available. If 'timeout' is a non-negative number, it blocks at most 'timeout' seconds and raises the Empty exception if no item was available within that time. Otherwise ('block' is false), return an item if one is immediately available, else raise the Empty exception ('timeout' is ignored in that case). ''' with self.not_empty: if not block: if not self._qsize(): raise Empty elif timeout is None: while not self._qsize(): self.not_empty.wait() elif timeout < 0: raise ValueError("'timeout' must be a non-negative number") else: endtime = time() + timeout while not self._qsize(): remaining = endtime - time() if remaining <= 0.0: raise Empty self.not_empty.wait(remaining) item = self._get() self.not_full.notify() return item def put_nowait(self, item): '''Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available. Otherwise raise the Full exception. ''' return self.put(item, block=False) def get_nowait(self): '''Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise raise the Empty exception. ''' return self.get(block=False) # Override these methods to implement other queue organizations # (e.g. stack or priority queue). # These will only be called with appropriate locks held # Initialize the queue representation def _init(self, maxsize): self.queue = deque() def _qsize(self): return len(self.queue) # Put a new item in the queue def _put(self, item): self.queue.append(item) # Get an item from the queue def _get(self): return self.queue.popleft()
①qsize(self) 隊列的個數
②full(self) 隊列是否滿了
③put(self, item, block=True, timeout=None) 放數
④get(self, block=True, timeout=None) 取數
二、雙向隊列(隨便存取) 在collections中。
class deque(object): """ deque([iterable[, maxlen]]) --> deque object A list-like sequence optimized for data accesses near its endpoints. """ def append(self, *args, **kwargs): # real signature unknown """ Add an element to the right side of the deque. """ pass def appendleft(self, *args, **kwargs): # real signature unknown """ Add an element to the left side of the deque. """ pass def clear(self, *args, **kwargs): # real signature unknown """ Remove all elements from the deque. """ pass def copy(self, *args, **kwargs): # real signature unknown """ Return a shallow copy of a deque. """ pass def count(self, value): # real signature unknown; restored from __doc__ """ D.count(value) -> integer -- return number of occurrences of value """ return 0 def extend(self, *args, **kwargs): # real signature unknown """ Extend the right side of the deque with elements from the iterable """ pass def extendleft(self, *args, **kwargs): # real signature unknown """ Extend the left side of the deque with elements from the iterable """ pass def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__ """ D.index(value, [start, [stop]]) -> integer -- return first index of value. Raises ValueError if the value is not present. """ return 0 def insert(self, index, p_object): # real signature unknown; restored from __doc__ """ D.insert(index, object) -- insert object before index """ pass def pop(self, *args, **kwargs): # real signature unknown """ Remove and return the rightmost element. """ pass def popleft(self, *args, **kwargs): # real signature unknown """ Remove and return the leftmost element. """ pass def remove(self, value): # real signature unknown; restored from __doc__ """ D.remove(value) -- remove first occurrence of value. """ pass def reverse(self): # real signature unknown; restored from __doc__ """ D.reverse() -- reverse *IN PLACE* """ pass def rotate(self, *args, **kwargs): # real signature unknown """ Rotate the deque n steps to the right (default n=1). If n is negative, rotates left. """ pass def __add__(self, *args, **kwargs): # real signature unknown """ Return self+value. """ pass def __bool__(self, *args, **kwargs): # real signature unknown """ self != 0 """ pass def __contains__(self, *args, **kwargs): # real signature unknown """ Return key in self. """ pass def __copy__(self, *args, **kwargs): # real signature unknown """ Return a shallow copy of a deque. """ pass def __delitem__(self, *args, **kwargs): # real signature unknown """ Delete self[key]. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __getitem__(self, *args, **kwargs): # real signature unknown """ Return self[key]. """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __iadd__(self, *args, **kwargs): # real signature unknown """ Implement self+=value. """ pass def __imul__(self, *args, **kwargs): # real signature unknown """ Implement self*=value. """ pass def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__ """ deque([iterable[, maxlen]]) --> deque object A list-like sequence optimized for data accesses near its endpoints. # (copied from class doc) """ pass def __iter__(self, *args, **kwargs): # real signature unknown """ Implement iter(self). """ pass def __len__(self, *args, **kwargs): # real signature unknown """ Return len(self). """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass def __mul__(self, *args, **kwargs): # real signature unknown """ Return self*value.n """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __reversed__(self): # real signature unknown; restored from __doc__ """ D.__reversed__() -- return a reverse iterator over the deque """ pass def __rmul__(self, *args, **kwargs): # real signature unknown """ Return self*value. """ pass def __setitem__(self, *args, **kwargs): # real signature unknown """ Set self[key] to value. """ pass def __sizeof__(self): # real signature unknown; restored from __doc__ """ D.__sizeof__() -- size of D in memory, in bytes """ pass maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """maximum size of a deque or None if unbounded""" __hash__ = None
①append(self, *args, **kwargs)
②appendleft(self, *args, **kwargs)
③extend(self, *args, **kwargs) 多個元素一塊兒添加(從右側)
④extendleft(self, *args, **kwargs) 多個元素一塊兒添加(從左側)
from collections import deque d=deque(['aaaa','ddddd','eeee']) print(d) d.extend(['111','222','333']) print(d) d.extendleft(['444','555']) print(d)
輸出
deque(['aaaa', 'ddddd', 'eeee'])
deque(['aaaa', 'ddddd', 'eeee', '111', '222', '333'])
deque(['555', '444', 'aaaa', 'ddddd', 'eeee', '111', '222', '333'])
⑤pop(self, *args, **kwargs) 取元素
⑥popleft(self, *args, **kwargs)
⑦rotate(self, *args, **kwargs) 首尾鏈接,向左/向右移動元素
from collections import deque d=deque(['555', '444', 'aaaa', 'ddddd', 'eeee', '111', '222', '333']) print(d) d.rotate(1) print(d) d.rotate(-1) print(d)
輸出
deque(['555', '444', 'aaaa', 'ddddd', 'eeee', '111', '222', '333'])deque(['333', '555', '444', 'aaaa', 'ddddd', 'eeee', '111', '222'])deque(['555', '444', 'aaaa', 'ddddd', 'eeee', '111', '222', '333'])