【Bias 02】BENCHMARKING NEURAL NETWORK ROBUSTNESS TO COMMON CORRUPTIONS AND PERTURBATIONS

摘要 對圖像分類的魯棒性評估,建立benchmark。我們的第一個benchmark是ImageNet-C,它可以評估哪一個分類器更適合安全關鍵的應用。第二個benchmark是ImageNet-P,使得研究人員可以衡量分類器對常見擾動的魯棒性。並且本文探究加強腐蝕和擾動的魯棒性,本文甚至發現bypassed adversarial defense提供了對於常見擾動的魯棒性。   Related
相關文章
相關標籤/搜索