經過了解學習tomcat如何處理併發請求,瞭解到線程池,鎖,隊列,unsafe類,下面的主要代碼來自java
java-jre:
sun.misc.Unsafe
java.util.concurrent.ThreadPoolExecutor
java.util.concurrent.ThreadPoolExecutor.Worker
java.util.concurrent.locks.AbstractQueuedSynchronizer
java.util.concurrent.locks.AbstractQueuedLongSynchronizer
java.util.concurrent.LinkedBlockingQueue
node
tomcat:
org.apache.tomcat.util.net.NioEndpoint
org.apache.tomcat.util.threads.ThreadPoolExecutor
org.apache.tomcat.util.threads.TaskThreadFactory
org.apache.tomcat.util.threads.TaskQueue
apache
是一個線程池實現類,管理線程,減小線程開銷,能夠用來提升任務執行效率,tomcat
構造方法中的參數有併發
public ThreadPoolExecutor( int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { }
corePoolSize 是核心線程數
maximumPoolSize 是最大線程數
keepAliveTime 非核心線程最大空閒時間(超過期間終止)
unit 時間單位
workQueue 隊列,當任務過多時,先存放在隊列
threadFactory 線程工廠,建立線程的工廠
handler 決絕策略,當任務數過多,隊列不能再存聽任務時,該如何處理,由此對象去處理。這是個接口,你能夠自定義處理方式高併發
此線程池是tomcat用來在接收到遠程請求後,將每次請求單獨做爲一個任務去處理,每次調用execute(Runnable)oop
org.apache.tomcat.util.net.NioEndpoint
學習
NioEndpoint初始化的時候,建立了線程池this
public void createExecutor() { internalExecutor = true; TaskQueue taskqueue = new TaskQueue(); //TaskQueue無界隊列,能夠一直添加,所以handler 等同於無效 TaskThreadFactory tf = new TaskThreadFactory(getName() + "-exec-", daemon, getThreadPriority()); executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf); taskqueue.setParent( (ThreadPoolExecutor) executor); }
在線程池建立時,調用prestartAllCoreThreads(), 初始化核心工做線程worker,並啓動.net
public int prestartAllCoreThreads() { int n = 0; while (addWorker(null, true)) ++n; return n; }
當addWorker 數量等於corePoolSize時,addWorker(null,ture)會返回false,中止worker工做線程的建立
每次客戶端過來請求(http),就會提交一次處理任務,
worker 從隊列中獲取任務運行,下面是任務放入隊列的邏輯代碼
ThreadPoolExecutor.execute(Runnable) 提交任務:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); // worker數 是否小於 核心線程數 tomcat中初始化後,通常不知足第一個條件,不會addWorker if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } // workQueue.offer(command),將任務添加到隊列, if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }
workQueue.offer(command) 完成了任務的提交(在tomcat處理遠程http請求時)。
TaskQueue 是 BlockingQueue 具體實現類,workQueue.offer(command)實際代碼:
public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { enqueue(node); //此處將任務添加到隊列 c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } // 添加任務到隊列 /** * Links node at end of queue. * * @param node the node */ private void enqueue(Node<E> node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; //鏈表結構 last.next = node; last = node }
以後是worker的工做,worker在run方法中經過去getTask()獲取此處提交的任務,並執行完成任務。
添加worker以後,提交任務,由於worker數量達到corePoolSize,任務都會將放入隊列,而worker的run方法則是循環獲取隊列中的任務(不爲空時),
worker run方法:
/** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); }
runWorker(worker)方法 循環部分代碼:
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { //循環獲取隊列中的任務 w.lock(); // 上鎖 try { // 運行前處理 beforeExecute(wt, task); // 隊列中的任務開始執行 task.run(); // 運行後處理 afterExecute(task, thrown); } finally { task = null; w.completedTasks++; w.unlock(); // 釋放鎖 } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } }
task.run()執行任務
ThreadPoolExecutor 使用鎖主要保證兩件事情,
1.給隊列添加任務,保證其餘線程不能操做隊列
2.獲取隊列的任務,保證其餘線程不能同時操做隊列
public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); //上鎖 try { if (count.get() < capacity) { enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); //釋放鎖 } if (c == 0) signalNotEmpty(); return c >= 0; }
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? // ...省略 for (;;) { try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); //獲取隊列中一個任務 if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } } public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); // 上鎖 try { while (count.get() == 0) { notEmpty.await(); //若是隊列中沒有任務,等待 } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); // 釋放鎖 } if (c == capacity) signalNotFull(); return x; }
在併發場景這個關鍵字修飾成員變量很常見,
主要目的公共變量在被某一個線程修改時,對其餘線程可見(實時)
線程池使用中,有平凡用到Unsafe類,這個類在高併發中,能作一些原子CAS操做,鎖線程,釋放線程等。
sun.misc.Unsafe
類是底層類,openjdk源碼中有
java.util.concurrent.locks.AbstractQueuedSynchronizer 類中就有保證原子操做的代碼
protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
對應Unsafe類的代碼:
//對應的java底層,實際是native方法,對應C++代碼 /** * Atomically update Java variable to <tt>x</tt> if it is currently * holding <tt>expected</tt>. * @return <tt>true</tt> if successful */ public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);
方法的做用簡單來講就是 更新一個值,保證原子性操做
當你要操做一個對象o
的一個成員變量offset
時,修改o.offset,
高併發下爲保證準確性,你在操做o.offset的時候,讀應該是正確的值,而且中間不能被別的線程修改來保證高併發的環境數據操做有效。
即 expected 指望值與內存中的值比較是同樣的expected == 內存中的值 ,則更新值爲 x,返回true表明修改爲功
不然,指望值與內存值不一樣,說明值被其餘線程修改過,不能更新值爲x,並返回false,告訴操做者這次原子性修改失敗。
public native void park(boolean isAbsolute, long time); //阻塞當前線程
線程池的worker角色循環獲取隊列任務,若是隊列中沒有任務,worker.run 仍是在等待的,不會退出線程,代碼中用了notEmpty.await()
中斷此worker線程,放入一個等待線程隊列(區別去任務隊列);當有新任務須要時,再notEmpty.signal()
喚醒此線程
底層分別是
unsafe.park() 阻塞當前線程
public native void park(boolean isAbsolute, long time);
unsafe.unpark() 喚醒線程
public native void unpark(Object thread);
這個操做是對應的,阻塞時,先將thread放入隊列,喚醒時,從隊列拿出被阻塞的線程,unsafe.unpark(thread)喚醒指定線程。
java.util.concurrent.locks.AbstractQueuedLongSynchronizer.ConditionObject
類中
經過鏈表存放線程信息
// 添加一個阻塞線程 private Node addConditionWaiter() { Node t = lastWaiter; // If lastWaiter is cancelled, clean out. if (t != null && t.waitStatus != Node.CONDITION) { unlinkCancelledWaiters(); t = lastWaiter; } Node node = new Node(Thread.currentThread(), Node.CONDITION); if (t == null) firstWaiter = node; else t.nextWaiter = node; lastWaiter = node; //將新阻塞的線程放到鏈表尾部 return node; } // 拿出一個被阻塞的線程 public final void signal() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); Node first = firstWaiter; //鏈表中第一個阻塞的線程 if (first != null) doSignal(first); } // 拿到後,喚醒此線程 final boolean transferForSignal(Node node) { LockSupport.unpark(node.thread); return true; } public static void unpark(Thread thread) { if (thread != null) UNSAFE.unpark(thread); }