春節前的兩個星期,本人寫了兩篇Spring Boot 應用集成Prometheus + Grafana實現監控告警功能的文章。java
憑藉着 Spring Boot Actuator 模塊 + micrometer-registry-prometheus
模塊,Spring Boot 應用和 Prometheus 集成變得很是的簡單。git
可是一些老項目多是非 Spring Boot 的 Spring MVC 項目。這一次就是來說一講傳統 Spring MVC 如何集成 Prometheus。也算是把這個系列完整一下。github
相關的理論部分,實際上在往期兩篇文章中都有說明,這裏就不贅述了,直接進入實操部分。spring
這裏實際上就是引入 Prometheus 最基礎的 Java 客戶端依賴。安全
<properties> ... <io.prometheus.version>0.8.0</io.prometheus.version> </properties> <!-- The client --> <dependency> <groupId>io.prometheus</groupId> <artifactId>simpleclient</artifactId> <version>${io.prometheus.version}</version> </dependency> <!-- Hotspot JVM metrics--> <dependency> <groupId>io.prometheus</groupId> <artifactId>simpleclient_hotspot</artifactId> <version>${io.prometheus.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/io.prometheus/simpleclient_servlet --> <dependency> <groupId>io.prometheus</groupId> <artifactId>simpleclient_servlet</artifactId> <version>${io.prometheus.version}</version> </dependency>
像
simpleclient_hotspot
這種就是幫忙作了Hotspot JVM metrics 的收集,還有些其餘的依賴能夠參照
官方github自行研究選擇
<servlet> <servlet-name>metrics</servlet-name> <servlet-class>io.prometheus.client.exporter.MetricsServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>metrics</servlet-name> <url-pattern>/metrics</url-pattern> </servlet-mapping>
若是有集成shiro
、spring security
的話,記得配置一下對應的路徑
在啓動類中增長以下代碼,app
@PostConstruct public void init() { //輸出JVM信息 DefaultExports.initialize(); }
如今啓動項目,訪問http://ip:port/metrics
,能夠看到相關的指標數據:jvm
# HELP jvm_buffer_pool_used_bytes Used bytes of a given JVM buffer pool. # TYPE jvm_buffer_pool_used_bytes gauge jvm_buffer_pool_used_bytes{pool="direct",} 1791403.0 jvm_buffer_pool_used_bytes{pool="mapped",} 0.0 # HELP jvm_buffer_pool_capacity_bytes Bytes capacity of a given JVM buffer pool. # TYPE jvm_buffer_pool_capacity_bytes gauge jvm_buffer_pool_capacity_bytes{pool="direct",} 1791403.0 jvm_buffer_pool_capacity_bytes{pool="mapped",} 0.0 # HELP jvm_buffer_pool_used_buffers Used buffers of a given JVM buffer pool. # TYPE jvm_buffer_pool_used_buffers gauge jvm_buffer_pool_used_buffers{pool="direct",} 44.0 jvm_buffer_pool_used_buffers{pool="mapped",} 0.0 # HELP jvm_memory_pool_allocated_bytes_total Total bytes allocated in a given JVM memory pool. Only updated after GC, not continuously. # TYPE jvm_memory_pool_allocated_bytes_total counter jvm_memory_pool_allocated_bytes_total{pool="Code Cache",} 2.4131136E7 jvm_memory_pool_allocated_bytes_total{pool="PS Eden Space",} 1.157973728E9 jvm_memory_pool_allocated_bytes_total{pool="PS Old Gen",} 4.2983992E7 jvm_memory_pool_allocated_bytes_total{pool="PS Survivor Space",} 2.3271936E7 jvm_memory_pool_allocated_bytes_total{pool="Compressed Class Space",} 6964912.0 jvm_memory_pool_allocated_bytes_total{pool="Metaspace",} 5.9245208E7 # HELP jvm_classes_loaded The number of classes that are currently loaded in the JVM # TYPE jvm_classes_loaded gauge ......
有了數據以後,後面的步驟(Prometheus 採集指標,可視化)在SpringBoot 微服務應用集成Prometheus + Grafana 實現監控告警有詳細的說明。ide
Prometheus提供了4中不一樣的Metrics類型:Counter, Gauge, Histogram, Summary。微服務
至於怎麼使用,官方doc中詳細的說明,這裏簡單舉兩個例子:測試
你能夠先聲明一個專門的攔截器,來處理統計Metrics的操做:
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter { @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { return super.preHandle(request, response, handler); } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { super.afterCompletion(request, response, handler, ex); } }
計數器能夠用於記錄只會增長不會減小的指標類型,好比記錄應用請求的總量(http_requests_total)。
對於Counter類型的指標,只包含一個inc()方法,用於計數器+1
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter { // 用請求路徑和http method 當作標籤 private Counter requestCounter = Counter.build() .name("io_namespace_http_requests_total") .labelNames("path", "method") .help("Total requests.") .register(); @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { return super.preHandle(request, response, handler); } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { // 調用inc() 技術+1 requestCounter.labels(request.getRequestURI(), request.getMethod()).inc(); super.afterCompletion(request, response, handler, ex); } }
一些對應的經常使用的聚合操做的PromQL:
# 經常使用PromQL ## 查詢應用的請求總量 sum(io_namespace_http_requests_total) ## 查詢每秒Http請求量 sum(rate(io_wise2c_gateway_requests_total[5m])) ## 查詢當前應用請求量Top N的URI topk(10, sum(io_namespace_http_requests_total) by (path))
主要用於在指定分佈範圍內(Buckets)記錄大小(如http request bytes)或者事件發生的次數。
以請求響應時間requests_latency_seconds爲例,假如咱們須要記錄http請求響應時間符合在分佈範圍{.005, .01, .025, .05, .075, .1, .25, .5, .75, 1, 2.5, 5, 7.5, 10}中的次數時。
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter { private Histogram requestLatencyHistogram = Histogram.build() .labelNames("path", "method", "code") .name("io_namespace_http_requests_latency_seconds_histogram") .help("Request latency in seconds.") .register(); // spring interceptor 單例,線程不安全,因此使用threadlocal private ThreadLocal<Histogram.Timer> timerThreadLocal = new ThreadLocal<>(); @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { Histogram.Timer histogramRequestTimer = requestLatencyHistogram.labels(request.getRequestURI(), request.getMethod()).startTimer(); timerThreadLocal.set(histogramRequestTimer); return super.preHandle(request, response, handler); } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { Histogram.Timer histogramRequestTimer = timerThreadLocal.get(); histogramRequestTimer.observeDuration(); timerThreadLocal.remove(); super.afterCompletion(request, response, handler, ex); } }
最後訪問前面配置的 /metrics
端點,查看對應埋點數據。
到這裏傳統Spring MVC如何集成 Prometheus 也就算講述完畢了,能夠結合前兩篇文章一塊兒食用。
但願能給你帶來一些收穫。
若是本文有幫助到你,但願能點個贊,這是對個人最大動力🤝🤝🤗🤗。