JavaShuo
欄目
標籤
Dynamic Fusion with Intra- and Inter-modality Attention Flow for Visual Question Answering 心得體會
時間 2021-01-04
原文
原文鏈接
論文鏈接:https://arxiv.org/abs/1812.05252 這篇論文提出了一種新的多模態特徵融合方法——模式內與模式間注意流的動態融合的視覺問題回答,它可以在視覺和語言模式之間傳遞動態信息,它能夠很好地捕捉語言和視覺領域之間的高層交互,從而顯着地提高了視覺問題回答的性能。 近年來,視覺問答(VQA)的性能得到了很大的提高,原因主要有三點: 提取到了很好的視覺和語言特徵表示;VGG,
>>阅读原文<<
相關文章
1.
閱讀筆記Dynamic Fusion with Intra- and Inter-modality Attention Flow for Visual Question Answering
2.
Visual Question Answering: Datasets, Algorithms, and Future Challenges心得體會
3.
Stacked Attention Networks for Image Question Answering心得體會
4.
Movie Question Answering: Remembering the Textual Cues for Layered Visual Contents心得體會
5.
Visual Question Answering with Memory-Augmented Networks
6.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
7.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
8.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
9.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
10.
用於視覺問答的具有模態內和模態間注意力的動態融合模型《Dynamic Fusion with Intra- and Inter-modality Attention Flow for Visual 》
更多相關文章...
•
XSL-FO flow 對象
-
XSL-FO 教程
•
Swift for 循環
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
心得體會
flow
fusion
question
answering
intra
dynamic
attention
visual
得體
NoSQL教程
MySQL教程
Hibernate教程
註冊中心
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
.Net core webapi2.1生成exe可執行文件
2.
查看dll信息工具-oleview
3.
c++初學者
4.
VM下載及安裝
5.
win10下如何安裝.NetFrame框架
6.
WIN10 安裝
7.
JAVA的環境配置
8.
idea全局配置maven
9.
vue項目啓動
10.
SVN使用-Can't remove directoryXXXX,目錄不是空的,項目報錯,有紅叉
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
閱讀筆記Dynamic Fusion with Intra- and Inter-modality Attention Flow for Visual Question Answering
2.
Visual Question Answering: Datasets, Algorithms, and Future Challenges心得體會
3.
Stacked Attention Networks for Image Question Answering心得體會
4.
Movie Question Answering: Remembering the Textual Cues for Layered Visual Contents心得體會
5.
Visual Question Answering with Memory-Augmented Networks
6.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
7.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
8.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
9.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
10.
用於視覺問答的具有模態內和模態間注意力的動態融合模型《Dynamic Fusion with Intra- and Inter-modality Attention Flow for Visual 》
>>更多相關文章<<