命令式和符號式混合編程

# 命令式和符號式編程

def add_str():
    return '''
def add(a,b):
    return a + b
'''



def fancy_func_str():
    return '''
def fancy_func(a, b, c, d):
    e = add(a,b)
    f = add(c,d)
    g = add(e,f)
    return g
'''

def evoke_str():
    return add_str() + fancy_func_str() + '''
print(fancy_func(1,2,3,4))
'''

prog = evoke_str()
# print(prog)

y = compile(prog,'','exec')
# exec(y)


from mxnet import nd,autograd,sym
from mxnet.gluon import nn,loss as gloss

def get_net():
    net = nn.HybridSequential()
    net.add(nn.Dense(256,activation='relu'),
            nn.Dense(128,activation='relu'),
            nn.Dense(2))
    net.initialize()
    return net

net = get_net()
X = nd.random.normal(shape=(1,512))
print(net(X))

# 經過net.hybridize()來編譯和優化HybridSequential實例中的串聯層的計算
net.hybridize()
print(net(X))

# 對比
import time
def benchmark(net, x):
    start = time.time()
    for i in range(1000):
        _ = net(x)
    nd.waitall()
    return time.time() - start

net = get_net()
print('before hybridizing: %.4f sec' % benchmark(net,X))

net.hybridize()
print('after hybridizing: %.4f sec' % benchmark(net,X))

# 保存參數
net.export('my_mlp')

x = sym.var('data')
print(net(x))
from mxnet.gluon import nn,loss
from mxnet import nd,autograd

class HybirdNet(nn.HybridBlock):
    def __init__(self, **kwargs):
        super(HybirdNet,self).__init__(**kwargs)
        self.hidden = nn.Dense(10)
        self.output = nn.Dense(2)

    def hybrid_forward(self, F, x, *args, **kwargs):
        print('F: ',F)
        print('x: ',x)
        x = F.relu(self.hidden(x))
        print('hidden: ',x)
        return self.output(x)

net = HybirdNet()
net.initialize()

X = nd.random.normal(shape=(1,4))
print(X)
print(net(X))

# 編譯優化
net.hybridize()
print(net(X))
相關文章
相關標籤/搜索