1、原理
前提:攝像頭固定由於攝像頭一動,內參不變(畸變係數),可是外參(座標變換)會變。
經過拍攝幾張標定板的照片,而後獲得畸變係數和相機內外參係數,而後每次讀取攝像機圖片時,將這些係數帶進去,計算以後就能夠獲得矯正後的圖片了。
效果以下:ios
畸變校訂前
緩存
畸變校訂後
函數
顯然上面圖片四周直線都是彎曲的,被矯正後,變得效果不錯了。ui
2、具體步驟
標定圖:
程序在第三部分,具體步驟以下:
一、將第三步的代碼複製到工程裏
二、 在工程目錄下(主函數.cpp相同目錄下)創建一個caliberation文件夾,採集10——20張照片(不一樣角度,方向,可是要把角點所有顯示出來),將照片放入該文件夾下。spa
效果以下:
三、新建一個calibdata.txt文件,將步驟2的圖片路徑寫進去格式以下:3d
./caliberation/1.jpg ./caliberation/2.jpg ./caliberation/3.jpg ./caliberation/4.jpg ./caliberation/5.jpg ./caliberation/6.jpg ./caliberation/7.jpg ./caliberation/8.jpg ./caliberation/9.jpg ./caliberation/10.jpg ./caliberation/11.jpg ./caliberation/12.jpg
四、新建一個chess文件夾(名字隨便,記得在程序裏改),用於保存畸變校訂後的圖片。
五、運行程序,會生成一個caliberation_result.txt文件,裏面保存了內外參等一些參數。好比畸變係數,旋轉矩陣,平移矩陣等。code
3、參數獲取程序代碼
//2018.6.19:畸變校訂 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include <fstream> using namespace cv; using namespace std; void main() { ifstream fin("calibdata.txt"); /* 標定所用圖像文件的路徑 */ ofstream fout("caliberation_result.txt"); /* 保存標定結果的文件 */ //讀取每一幅圖像,從中提取出角點,而後對角點進行亞像素精確化 cout << "開始提取角點………………"; int image_count = 0; /* 圖像數量 */ Size image_size; /* 圖像的尺寸 */ Size board_size = Size(4, 6); /* 標定板上每行、列的角點數 */ vector<Point2f> image_points_buf; /* 緩存每幅圖像上檢測到的角點 */ vector<vector<Point2f>> image_points_seq; /* 保存檢測到的全部角點 */ string filename; int count = -1;//用於存儲角點個數。 while (getline(fin, filename)) { image_count++; // 用於觀察檢驗輸出 cout << "image_count = " << image_count << endl; /* 輸出檢驗*/ cout << "-->count = " << count; Mat imageInput = imread(filename); if (imageInput.empty()) { cout << "can not open pic!\n"; exit(-1); } if (image_count == 1) //讀入第一張圖片時獲取圖像寬高信息 { image_size.width = imageInput.cols; image_size.height = imageInput.rows; cout << "image_size.width = " << image_size.width << endl; cout << "image_size.height = " << image_size.height << endl; } /* 提取角點 */ if (0 == findChessboardCorners(imageInput, board_size, image_points_buf)) { cout << "can not find chessboard corners!\n"; //找不到角點 exit(1); } else { Mat view_gray; cvtColor(imageInput, view_gray, CV_RGB2GRAY); /* 亞像素精確化 */ find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); //對粗提取的角點進行精確化 //cornerSubPix(view_gray,image_points_buf,Size(5,5),Size(-1,-1),TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1)); image_points_seq.push_back(image_points_buf); //保存亞像素角點 /* 在圖像上顯示角點位置 */ drawChessboardCorners(view_gray, board_size, image_points_buf, false); //用於在圖片中標記角點 namedWindow("Camera Calibration", 0);//建立窗口 imshow("Camera Calibration", view_gray);//顯示圖片 waitKey(500);//暫停0.5S } } int total = image_points_seq.size(); cout << "total = " << total << endl; int CornerNum = board_size.width*board_size.height; //每張圖片上總的角點數 for (int ii = 0; ii<total; ii++) { if (0 == ii % CornerNum)// 24 是每幅圖片的角點個數。此判斷語句是爲了輸出 圖片號,便於控制檯觀看 { int i = -1; i = ii / CornerNum; int j = i + 1; cout << "--> 第 " << j << "圖片的數據 --> : " << endl; } if (0 == ii % 3) // 此判斷語句,格式化輸出,便於控制檯查看 { cout << endl; } else { cout.width(10); } //輸出全部的角點 cout << " -->" << image_points_seq[ii][0].x; cout << " -->" << image_points_seq[ii][0].y; } cout << "角點提取完成!\n"; //如下是攝像機標定 cout << "開始標定………………"; /*棋盤三維信息*/ Size square_size = Size(10, 10); /* 實際測量獲得的標定板上每一個棋盤格的大小 */ vector<vector<Point3f>> object_points; /* 保存標定板上角點的三維座標 */ /*內外參數*/ Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 攝像機內參數矩陣 */ vector<int> point_counts; // 每幅圖像中角點的數量 Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 攝像機的5個畸變係數:k1,k2,p1,p2,k3 */ vector<Mat> tvecsMat; /* 每幅圖像的旋轉向量 */ vector<Mat> rvecsMat; /* 每幅圖像的平移向量 */ /* 初始化標定板上角點的三維座標 */ int i, j, t; for (t = 0; t<image_count; t++) { vector<Point3f> tempPointSet; for (i = 0; i<board_size.height; i++) { for (j = 0; j<board_size.width; j++) { Point3f realPoint; /* 假設標定板放在世界座標系中z=0的平面上 */ realPoint.x = i * square_size.width; realPoint.y = j * square_size.height; realPoint.z = 0; tempPointSet.push_back(realPoint); } } object_points.push_back(tempPointSet); } /* 初始化每幅圖像中的角點數量,假定每幅圖像中均可以看到完整的標定板 */ for (i = 0; i<image_count; i++) { point_counts.push_back(board_size.width*board_size.height); } /* 開始標定 */ calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0); cout << "標定完成!\n"; //對標定結果進行評價 cout << "開始評價標定結果………………\n"; double total_err = 0.0; /* 全部圖像的平均偏差的總和 */ double err = 0.0; /* 每幅圖像的平均偏差 */ vector<Point2f> image_points2; /* 保存從新計算獲得的投影點 */ cout << "\t每幅圖像的標定偏差:\n"; fout << "每幅圖像的標定偏差:\n"; for (i = 0; i<image_count; i++) { vector<Point3f> tempPointSet = object_points[i]; /* 經過獲得的攝像機內外參數,對空間的三維點進行從新投影計算,獲得新的投影點 */ projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2); /* 計算新的投影點和舊的投影點之間的偏差*/ vector<Point2f> tempImagePoint = image_points_seq[i]; Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2); Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2); for (int j = 0; j < tempImagePoint.size(); j++) { image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y); tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y); } err = norm(image_points2Mat, tempImagePointMat, NORM_L2); total_err += err /= point_counts[i]; std::cout << "第" << i + 1 << "幅圖像的平均偏差:" << err << "像素" << endl; fout << "第" << i + 1 << "幅圖像的平均偏差:" << err << "像素" << endl; } std::cout << "整體平均偏差:" << total_err / image_count << "像素" << endl; fout << "整體平均偏差:" << total_err / image_count << "像素" << endl << endl; std::cout << "評價完成!" << endl; //保存定標結果 std::cout << "開始保存定標結果………………" << endl; Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅圖像的旋轉矩陣 */ fout << "相機內參數矩陣:" << endl; fout << cameraMatrix << endl << endl; fout << "畸變係數:\n"; fout << distCoeffs << endl << endl << endl; for (int i = 0; i<image_count; i++) { fout << "第" << i + 1 << "幅圖像的旋轉向量:" << endl; fout << tvecsMat[i] << endl; /* 將旋轉向量轉換爲相對應的旋轉矩陣 */ Rodrigues(tvecsMat[i], rotation_matrix); fout << "第" << i + 1 << "幅圖像的旋轉矩陣:" << endl; fout << rotation_matrix << endl; fout << "第" << i + 1 << "幅圖像的平移向量:" << endl; fout << rvecsMat[i] << endl << endl; } std::cout << "完成保存" << endl; fout << endl; /************************************************************************ 顯示定標結果 *************************************************************************/ Mat mapx = Mat(image_size, CV_32FC1); Mat mapy = Mat(image_size, CV_32FC1); Mat R = Mat::eye(3, 3, CV_32F); std::cout << "保存矯正圖像" << endl; string imageFileName; std::stringstream StrStm; for (int i = 0; i != image_count; i++) { std::cout << "Frame #" << i + 1 << "..." << endl; /* */ initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy); StrStm.clear(); imageFileName.clear(); string filePath = "chess"; StrStm << i + 1; StrStm >> imageFileName; filePath += imageFileName; filePath += ".jpg"; Mat imageSource = imread("1.jpg"); //讀取畸變圖片 Mat newimage = imageSource.clone(); //校訂後輸出圖片 //另外一種不須要轉換矩陣的方式 // undistort(imageSource,newimage,cameraMatrix,distCoeffs); remap(imageSource, newimage, mapx, mapy, INTER_LINEAR); StrStm.clear(); filePath.clear(); StrStm << i + 1; StrStm >> imageFileName; imageFileName += "_d.jpg"; imwrite(imageFileName, newimage); } std::cout << "保存結束" << endl; return; }
4、使用程序
這個部分就是將獲得的參數,應用到具體的程序中,不用每次進行標定,只要攝像頭位置不變,就能夠將畸變參數帶進去就能夠矯正。orm
void InitMat(Mat& m, float* num) { for (int i = 0; i<m.rows; i++) for (int j = 0; j<m.cols; j++) m.at<float>(i, j) = *(num + i * m.rows + j); } int main() { int i = 1000; int n = 1; Mat edges; Mat frame = imread("2.jpg"); //讀取畸變圖片 Mat R = Mat::eye(3, 3, CV_32F); Size image_size; /* 圖像的尺寸 */ //獲取圖像大小 image_size.width = 1920; image_size.height = 1080; //cameraMatrix爲 "相機內參數矩陣:" << endl; Mat mapx = Mat(image_size, CV_32FC1); Mat mapy = Mat(image_size, CV_32FC1); //參數矩陣 float neican_data[] = { 9558.649257742036, 0, 959.3165310990756, 0, 9435.752651759443, 532.7507141910969, 0, 0, 1 }; Mat cameraMatrix(3, 3, CV_32FC1); InitMat(cameraMatrix, neican_data); cout << "cameraMatrix= " << endl << " " << cameraMatrix << endl << endl; //測得的畸變係數 float jibian_data[] = { -6.956561513881647, -68.83902522804168, -0.004834538444671919, 0.01471273691928269, -0.4916103704308509 }; Mat distCoeffs(1, 5, CV_32FC1); /* 攝像機的5個畸變係數:k1,k2,p1,p2,k3 */ InitMat(distCoeffs, jibian_data); cout << "distCoeffs= " << endl << " " << distCoeffs << endl << endl; i = 0; namedWindow("【原始圖】", 0);//參數爲零,則能夠自由拖動 imshow("【原始圖】", frame); /********相機矯正*******************************************************************************/ initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy); Mat imageSource = frame; //讀取畸變圖片 Mat newimage = imageSource.clone(); //校訂後輸出圖片 remap(imageSource, newimage, mapx, mapy, INTER_LINEAR); namedWindow("畸變校訂後的圖片", 0);//參數爲零,則能夠自由拖動 imshow("畸變校訂後的圖片", newimage); }
上面只是矯正部分的代碼圖片