導入包算法
import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt %matplotlib inline # 設置顯示漢字 import sys reload(sys) sys.setdefaultencoding('utf8') from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默認字體 mpl.rcParams['axes.unicode_minus'] = False # 解決保存圖像是負號'-'顯示爲方塊的問題
2,導入數據各個海濱城市數據app
ferrara1 = pd.read_csv('./ferrara_150715.csv') ferrara2 = pd.read_csv('./ferrara_250715.csv') ferrara3 = pd.read_csv('./ferrara_270615.csv') ferrara=pd.concat([ferrara1,ferrara1,ferrara1],ignore_index=True) torino1 = pd.read_csv('./torino_150715.csv') torino2 = pd.read_csv('./torino_250715.csv') torino3 = pd.read_csv('./torino_270615.csv') torino = pd.concat([torino1,torino2,torino3],ignore_index=True) mantova1 = pd.read_csv('./mantova_150715.csv') mantova2 = pd.read_csv('./mantova_250715.csv') mantova3 = pd.read_csv('./mantova_270615.csv') mantova = pd.concat([mantova1,mantova2,mantova3],ignore_index=True) milano1 = pd.read_csv('./milano_150715.csv') milano2 = pd.read_csv('./milano_250715.csv') milano3 = pd.read_csv('./milano_270615.csv') milano = pd.concat([milano1,milano2,milano3],ignore_index=True) ravenna1 = pd.read_csv('./ravenna_150715.csv') ravenna2 = pd.read_csv('./ravenna_250715.csv') ravenna3 = pd.read_csv('./ravenna_270615.csv') ravenna = pd.concat([ravenna1,ravenna2,ravenna3],ignore_index=True) asti1 = pd.read_csv('./asti_150715.csv') asti2 = pd.read_csv('./asti_250715.csv') asti3 = pd.read_csv('./asti_270615.csv') asti = pd.concat([asti1,asti2,asti3],ignore_index=True) bologna1 = pd.read_csv('./bologna_150715.csv') bologna2 = pd.read_csv('./bologna_250715.csv') bologna3 = pd.read_csv('./bologna_270615.csv') bologna = pd.concat([bologna1,bologna2,bologna3],ignore_index=True) piacenza1 = pd.read_csv('./piacenza_150715.csv') piacenza2 = pd.read_csv('./piacenza_250715.csv') piacenza3 = pd.read_csv('./piacenza_270615.csv') piacenza = pd.concat([piacenza1,piacenza2,piacenza3],ignore_index=True) cesena1 = pd.read_csv('./cesena_150715.csv') cesena2 = pd.read_csv('./cesena_250715.csv') cesena3 = pd.read_csv('./cesena_270615.csv') cesena = pd.concat([cesena1,cesena2,cesena3],ignore_index=True) faenza1 = pd.read_csv('./faenza_150715.csv') faenza2 = pd.read_csv('./faenza_250715.csv') faenza3 = pd.read_csv('./faenza_270615.csv') faenza = pd.concat([faenza1,faenza2,faenza3],ignore_index=True) faenza.head()
4,去除沒用的列機器學習
city_list = [ferrara,torino,mantova,milano,ravenna,asti,bologna,piacenza,cesena,faenza] for city in city_list: city.drop(labels='Unnamed: 0',axis=1,inplace=True)
5,顯示最高溫度於離海遠近的關係(觀察多個城市) 學習
city_max_temp = [] city_dist = [] for city in city_list: max_temp = city['temp'].max() city_max_temp.append(max_temp) dist = city['dist'][0] city_dist.append(dist) #查看各個城市的最高溫度數據 city_max_temp
plt.scatter(city_dist,city_max_temp) plt.xlabel('距離') plt.ylabel('最高溫度') plt.title('距離和溫度之間的關係圖')
觀察發現,離海近的能夠造成一條直線,離海遠的也能造成一條直線。字體
- 分別以100千米和50千米爲分界點,劃分爲離海近和離海遠的兩組數據(近海:小於100 遠海:大於50)
#找出全部的近海城市(溫度和距離) np_city_dist = np.array(city_dist) np_city_max_temp = np.array(city_max_temp) near_condition = np_city_dist < 100 near_city_dist = np_city_dist[near_condition] near_city_max_temp = np_city_max_temp[near_condition] plt.scatter(near_city_dist,near_city_max_temp)
- 算法模型對象:特殊的對象.在該對象中已經集成好個一個方程(尚未求出解的方程). - 模型對象的做用:經過方程實現預測或者分類 - 樣本數據(df,np): - 特徵數據:自變量 - 目標(標籤)數據:因變量 - 模型對象的分類: - 有監督學習:模型須要的樣本數據中存在特徵和目標 - 無監督學習:模型須要的樣本數據中存在特徵 - 半監督學習:模型須要的樣本數據部分須要有特徵和目標,部分只須要特徵數據 - sklearn模塊:封裝了多種模型對象.
導入sklearn,創建線性迴歸算法模型對象spa
#1.導包 from sklearn.linear_model import LinearRegression #2.實例化模型對象 linner = LinearRegression() #3.提取樣本數據 #4.訓練模型 linner.fit(near_city_dist.reshape(-1,1),near_city_max_temp) #5.預測 linner.predict(38) #array([33.16842645]) linner.score(near_city_dist.reshape(-1,1),near_city_max_temp) 0.77988083971852 #繪製迴歸曲線 x = np.linspace(10,70,num=100) y = linner.predict(x.reshape(-1,1)) plt.scatter(near_city_dist,near_city_max_temp) plt.scatter(x,y,s=0.2)
#將近海和遠海的散點圖合併顯示 plt.scatter(far_city_dists,far_max_temps,s=100) plt.scatter(near_city_dists,near_max_temps) plt.scatter(far_city_dists,far_max_temps) plt.plot(x,y) plt.scatter(near_city_dists,near_max_temps) plt.plot(x1,y1) plt.title('最高溫度和距海洋距離的關係圖',fontsize=20) plt.xlabel('距海洋距離',fontsize=15) plt.ylabel('最高溫度',fontsize=15)