聊聊storm nimbus的mkAssignments

本文主要研究一下storm nimbus的mkAssignmentshtml

Nimbus.mkAssignments

storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.javajava

void doRebalance(String topoId, StormBase stormBase) throws Exception {
        RebalanceOptions rbo = stormBase.get_topology_action_options().get_rebalance_options();
        StormBase updated = new StormBase();
        updated.set_topology_action_options(null);
        updated.set_component_debug(Collections.emptyMap());

        if (rbo.is_set_num_executors()) {
            updated.set_component_executors(rbo.get_num_executors());
        }

        if (rbo.is_set_num_workers()) {
            updated.set_num_workers(rbo.get_num_workers());
        }
        stormClusterState.updateStorm(topoId, updated);
        updateBlobStore(topoId, rbo, ServerUtils.principalNameToSubject(rbo.get_principal()));
        idToExecutors.getAndUpdate(new Dissoc<>(topoId)); // remove the executors cache to let it recompute.
        mkAssignments(topoId);
    }

    private void mkAssignments() throws Exception {
        mkAssignments(null);
    }
  • 這裏調用stormClusterState.updateStorm(topoId, updated)更新zk數據
  • 這裏doRebalance以及mkAssignments都調用了mkAssignments(String scratchTopoId)方法

mkAssignments(String scratchTopoId)

storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.javanode

private void mkAssignments(String scratchTopoId) throws Exception {
        try {
            if (!isReadyForMKAssignments()) {
                return;
            }
            // get existing assignment (just the topologyToExecutorToNodePort map) -> default to {}
            // filter out ones which have a executor timeout
            // figure out available slots on cluster. add to that the used valid slots to get total slots. figure out how many executors
            // should be in each slot (e.g., 4, 4, 4, 5)
            // only keep existing slots that satisfy one of those slots. for rest, reassign them across remaining slots
            // edge case for slots with no executor timeout but with supervisor timeout... just treat these as valid slots that can be
            // reassigned to. worst comes to worse the executor will timeout and won't assign here next time around

            IStormClusterState state = stormClusterState;
            //read all the topologies
            Map<String, StormBase> bases;
            Map<String, TopologyDetails> tds = new HashMap<>();
            synchronized (submitLock) {
                // should promote: only fetch storm bases of topologies that need scheduling.
                bases = state.topologyBases();

                for (Iterator<Entry<String, StormBase>> it = bases.entrySet().iterator(); it.hasNext(); ) {
                    Entry<String, StormBase> entry = it.next();
                    String id = entry.getKey();
                    try {
                        tds.put(id, readTopologyDetails(id, entry.getValue()));
                    } catch (KeyNotFoundException e) {
                        //A race happened and it is probably not running
                        it.remove();
                    }
                }
            }
            List<String> assignedTopologyIds = state.assignments(null);
            Map<String, Assignment> existingAssignments = new HashMap<>();
            for (String id : assignedTopologyIds) {
                //for the topology which wants rebalance (specified by the scratchTopoId)
                // we exclude its assignment, meaning that all the slots occupied by its assignment
                // will be treated as free slot in the scheduler code.
                if (!id.equals(scratchTopoId)) {
                    Assignment currentAssignment = state.assignmentInfo(id, null);
                    if (!currentAssignment.is_set_owner()) {
                        TopologyDetails td = tds.get(id);
                        if (td != null) {
                            currentAssignment.set_owner(td.getTopologySubmitter());
                            state.setAssignment(id, currentAssignment, td.getConf());
                        }
                    }
                    existingAssignments.put(id, currentAssignment);
                }
            }

            // make the new assignments for topologies
            lockingMkAssignments(existingAssignments, bases, scratchTopoId, assignedTopologyIds, state, tds);
        } catch (Exception e) {
            this.mkAssignmentsErrors.mark();
            throw e;
        }
    }
  • 經過readTopologyDetails讀取topology對應的TopologyDetails信息
  • 經過state.assignments(Runnable callback)以及state.assignmentInfo(String stormId, Runnable callback)獲取已經存在的assignments
  • 而後調用lockingMkAssignments爲topologies分配新的assignments

lockingMkAssignments

storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.javaapache

private void lockingMkAssignments(Map<String, Assignment> existingAssignments, Map<String, StormBase> bases,
                                      String scratchTopoId, List<String> assignedTopologyIds, IStormClusterState state,
                                      Map<String, TopologyDetails> tds) throws Exception {
        Topologies topologies = new Topologies(tds);

        synchronized (schedLock) {
            Map<String, SchedulerAssignment> newSchedulerAssignments =
                    computeNewSchedulerAssignments(existingAssignments, topologies, bases, scratchTopoId);

            Map<String, Map<List<Long>, List<Object>>> topologyToExecutorToNodePort =
                    computeTopoToExecToNodePort(newSchedulerAssignments, assignedTopologyIds);
            Map<String, Map<WorkerSlot, WorkerResources>> newAssignedWorkerToResources =
                    computeTopoToNodePortToResources(newSchedulerAssignments);
            int nowSecs = Time.currentTimeSecs();
            Map<String, SupervisorDetails> basicSupervisorDetailsMap = basicSupervisorDetailsMap(state);
            //construct the final Assignments by adding start-times etc into it
            Map<String, Assignment> newAssignments = new HashMap<>();
            //......

            //tasks figure out what tasks to talk to by looking at topology at runtime
            // only log/set when there's been a change to the assignment
            for (Entry<String, Assignment> entry : newAssignments.entrySet()) {
                String topoId = entry.getKey();
                Assignment assignment = entry.getValue();
                Assignment existingAssignment = existingAssignments.get(topoId);
                TopologyDetails td = topologies.getById(topoId);
                if (assignment.equals(existingAssignment)) {
                    LOG.debug("Assignment for {} hasn't changed", topoId);
                } else {
                    LOG.info("Setting new assignment for topology id {}: {}", topoId, assignment);
                    state.setAssignment(topoId, assignment, td.getConf());
                }
            }

            //grouping assignment by node to see the nodes diff, then notify nodes/supervisors to synchronize its owned assignment
            //because the number of existing assignments is small for every scheduling round,
            //we expect to notify supervisors at almost the same time
            Map<String, String> totalAssignmentsChangedNodes = new HashMap<>();
            for (Entry<String, Assignment> entry : newAssignments.entrySet()) {
                String topoId = entry.getKey();
                Assignment assignment = entry.getValue();
                Assignment existingAssignment = existingAssignments.get(topoId);
                totalAssignmentsChangedNodes.putAll(assignmentChangedNodes(existingAssignment, assignment));
            }
            notifySupervisorsAssignments(newAssignments, assignmentsDistributer, totalAssignmentsChangedNodes,
                    basicSupervisorDetailsMap);

            Map<String, Collection<WorkerSlot>> addedSlots = new HashMap<>();
            for (Entry<String, Assignment> entry : newAssignments.entrySet()) {
                String topoId = entry.getKey();
                Assignment assignment = entry.getValue();
                Assignment existingAssignment = existingAssignments.get(topoId);
                if (existingAssignment == null) {
                    existingAssignment = new Assignment();
                    existingAssignment.set_executor_node_port(new HashMap<>());
                    existingAssignment.set_executor_start_time_secs(new HashMap<>());
                }
                Set<WorkerSlot> newSlots = newlyAddedSlots(existingAssignment, assignment);
                addedSlots.put(topoId, newSlots);
            }
            inimbus.assignSlots(topologies, addedSlots);
        }
    }
  • 這裏首先調用computeNewSchedulerAssignments方法計算newSchedulerAssignments
  • 對newAssignments進行遍歷,若是assignment有變更,則調用state.setAssignment(topoId, assignment, td.getConf())將分配信息寫到zk
  • 而後計算totalAssignmentsChangedNodes調用notifySupervisorsAssignments,藉助AssignmentDistributionService通知到supervisors

computeNewSchedulerAssignments

storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.javaapp

private Map<String, SchedulerAssignment> computeNewSchedulerAssignments(Map<String, Assignment> existingAssignments,
                                                                            Topologies topologies, Map<String, StormBase> bases,
                                                                            String scratchTopologyId)
        throws KeyNotFoundException, AuthorizationException, InvalidTopologyException, IOException {

        Map<String, Set<List<Integer>>> topoToExec = computeTopologyToExecutors(bases);

        Set<String> zkHeartbeatTopologies = topologies.getTopologies().stream()
                                                      .filter(topo -> !supportRpcHeartbeat(topo))
                                                      .map(TopologyDetails::getId)
                                                      .collect(Collectors.toSet());

        updateAllHeartbeats(existingAssignments, topoToExec, zkHeartbeatTopologies);

        Map<String, Set<List<Integer>>> topoToAliveExecutors = computeTopologyToAliveExecutors(existingAssignments, topologies,
                                                                                               topoToExec, scratchTopologyId);
        Map<String, Set<Long>> supervisorToDeadPorts = computeSupervisorToDeadPorts(existingAssignments, topoToExec,
                                                                                    topoToAliveExecutors);
        Map<String, SchedulerAssignmentImpl> topoToSchedAssignment = computeTopologyToSchedulerAssignment(existingAssignments,
                                                                                                          topoToAliveExecutors);
        Set<String> missingAssignmentTopologies = new HashSet<>();
        for (TopologyDetails topo : topologies.getTopologies()) {
            String id = topo.getId();
            Set<List<Integer>> allExecs = topoToExec.get(id);
            Set<List<Integer>> aliveExecs = topoToAliveExecutors.get(id);
            int numDesiredWorkers = topo.getNumWorkers();
            int numAssignedWorkers = numUsedWorkers(topoToSchedAssignment.get(id));
            if (allExecs == null || allExecs.isEmpty() || !allExecs.equals(aliveExecs) || numDesiredWorkers > numAssignedWorkers) {
                //We have something to schedule...
                missingAssignmentTopologies.add(id);
            }
        }
        Map<String, SupervisorDetails> supervisors =
            readAllSupervisorDetails(supervisorToDeadPorts, topologies, missingAssignmentTopologies);
        Cluster cluster = new Cluster(inimbus, resourceMetrics, supervisors, topoToSchedAssignment, topologies, conf);
        cluster.setStatusMap(idToSchedStatus.get());

        schedulingStartTimeNs.set(Time.nanoTime());
        scheduler.schedule(topologies, cluster);
        //Get and set the start time before getting current time in order to avoid potential race with the longest-scheduling-time-ms gauge
        //......

        return cluster.getAssignments();
    }
  • computeTopologyToExecutors返回的是Map<String, Set<List<Integer>>> topoToExec,key爲topologyId,value爲Set<List<Integer>>,Integer爲executorId
  • computeTopologyToAliveExecutors返回的是Map<String, Set<List<Integer>>> topoToAliveExecutors,key爲topologyId,value爲Set<List<Integer>>,Integer爲executorId
  • computeSupervisorToDeadPorts返回的是Map<String, Set<Long>> supervisorToDeadPorts,key爲supervisorId,value爲Set<Long>,Long爲port端口
  • computeTopologyToSchedulerAssignment返回的是Map<String, SchedulerAssignmentImpl> topoToSchedAssignment,key爲topologyId,value爲SchedulerAssignmentImpl
  • 以後根據topology配置要求的woker數量及executor數量跟現有的assignment進行對比,計算出missingAssignmentTopologies
  • readAllSupervisorDetails返回Map<String, SupervisorDetails> supervisors,即存活的能夠分配的supervisor信息
  • 最後這裏建立Cluster,而後調用scheduler.schedule(topologies, cluster);進行調度

DefaultScheduler.schedule

storm-2.0.0/storm-server/src/main/java/org/apache/storm/scheduler/DefaultScheduler.javaide

public void schedule(Topologies topologies, Cluster cluster) {
        defaultSchedule(topologies, cluster);
    }

    public static void defaultSchedule(Topologies topologies, Cluster cluster) {
        for (TopologyDetails topology : cluster.needsSchedulingTopologies()) {
            List<WorkerSlot> availableSlots = cluster.getAvailableSlots();
            Set<ExecutorDetails> allExecutors = topology.getExecutors();

            Map<WorkerSlot, List<ExecutorDetails>> aliveAssigned =
                EvenScheduler.getAliveAssignedWorkerSlotExecutors(cluster, topology.getId());
            Set<ExecutorDetails> aliveExecutors = new HashSet<ExecutorDetails>();
            for (List<ExecutorDetails> list : aliveAssigned.values()) {
                aliveExecutors.addAll(list);
            }

            Set<WorkerSlot> canReassignSlots = slotsCanReassign(cluster, aliveAssigned.keySet());
            int totalSlotsToUse = Math.min(topology.getNumWorkers(), canReassignSlots.size() + availableSlots.size());

            Set<WorkerSlot> badSlots = null;
            if (totalSlotsToUse > aliveAssigned.size() || !allExecutors.equals(aliveExecutors)) {
                badSlots = badSlots(aliveAssigned, allExecutors.size(), totalSlotsToUse);
            }
            if (badSlots != null) {
                cluster.freeSlots(badSlots);
            }

            EvenScheduler.scheduleTopologiesEvenly(new Topologies(topology), cluster);
        }
    }
  • 經過cluster.needsSchedulingTopologies()遍歷須要調度的TopologyDetails進行處理
  • 經過cluster.getAvailableSlots()獲取可用的slots
  • 經過EvenScheduler.getAliveAssignedWorkerSlotExecutors獲取aliveAssigned,根據aliveAssigned調用slotsCanReassign獲取canReassignSlots
  • Math.min(topology.getNumWorkers(), canReassignSlots.size() + availableSlots.size())計算totalSlotsToUse,對badSlots進行釋放
  • 最後經過EvenScheduler.scheduleTopologiesEvenly(new Topologies(topology), cluster)進行分配

EvenScheduler.scheduleTopologiesEvenly

storm-2.0.0/storm-server/src/main/java/org/apache/storm/scheduler/EvenScheduler.javafetch

public static void scheduleTopologiesEvenly(Topologies topologies, Cluster cluster) {
        for (TopologyDetails topology : cluster.needsSchedulingTopologies()) {
            String topologyId = topology.getId();
            Map<ExecutorDetails, WorkerSlot> newAssignment = scheduleTopology(topology, cluster);
            Map<WorkerSlot, List<ExecutorDetails>> nodePortToExecutors = Utils.reverseMap(newAssignment);

            for (Map.Entry<WorkerSlot, List<ExecutorDetails>> entry : nodePortToExecutors.entrySet()) {
                WorkerSlot nodePort = entry.getKey();
                List<ExecutorDetails> executors = entry.getValue();
                cluster.assign(nodePort, topologyId, executors);
            }
        }
    }
  • 經過scheduleTopology(topology, cluster)計算newAssignment,轉換爲Map<WorkerSlot, List<ExecutorDetails>> nodePortToExecutors
  • 經過cluster.assign(nodePort, topologyId, executors)進行分配

EvenScheduler.scheduleTopology

storm-2.0.0/storm-server/src/main/java/org/apache/storm/scheduler/EvenScheduler.javathis

private static Map<ExecutorDetails, WorkerSlot> scheduleTopology(TopologyDetails topology, Cluster cluster) {
        List<WorkerSlot> availableSlots = cluster.getAvailableSlots();
        Set<ExecutorDetails> allExecutors = topology.getExecutors();
        Map<WorkerSlot, List<ExecutorDetails>> aliveAssigned = getAliveAssignedWorkerSlotExecutors(cluster, topology.getId());
        int totalSlotsToUse = Math.min(topology.getNumWorkers(), availableSlots.size() + aliveAssigned.size());

        List<WorkerSlot> sortedList = sortSlots(availableSlots);
        if (sortedList == null) {
            LOG.error("No available slots for topology: {}", topology.getName());
            return new HashMap<ExecutorDetails, WorkerSlot>();
        }

        //allow requesting slots number bigger than available slots
        int toIndex = (totalSlotsToUse - aliveAssigned.size())
                      > sortedList.size() ? sortedList.size() : (totalSlotsToUse - aliveAssigned.size());
        List<WorkerSlot> reassignSlots = sortedList.subList(0, toIndex);

        Set<ExecutorDetails> aliveExecutors = new HashSet<ExecutorDetails>();
        for (List<ExecutorDetails> list : aliveAssigned.values()) {
            aliveExecutors.addAll(list);
        }
        Set<ExecutorDetails> reassignExecutors = Sets.difference(allExecutors, aliveExecutors);

        Map<ExecutorDetails, WorkerSlot> reassignment = new HashMap<ExecutorDetails, WorkerSlot>();
        if (reassignSlots.size() == 0) {
            return reassignment;
        }

        List<ExecutorDetails> executors = new ArrayList<ExecutorDetails>(reassignExecutors);
        Collections.sort(executors, new Comparator<ExecutorDetails>() {
            @Override
            public int compare(ExecutorDetails o1, ExecutorDetails o2) {
                return o1.getStartTask() - o2.getStartTask();
            }
        });

        for (int i = 0; i < executors.size(); i++) {
            reassignment.put(executors.get(i), reassignSlots.get(i % reassignSlots.size()));
        }

        if (reassignment.size() != 0) {
            LOG.info("Available slots: {}", availableSlots.toString());
        }
        return reassignment;
    }
  • 根據availableSlots計算出List<WorkerSlot> reassignSlots
  • 經過Sets.difference(allExecutors, aliveExecutors)計算reassignExecutors,並按startTask進行排序
  • 最後遍歷reassignExecutors,分配slots,slot按reassignSlots.get(i % reassignSlots.size())分配

ExecutorDetails

storm-2.0.0/storm-server/src/main/java/org/apache/storm/scheduler/ExecutorDetails.javadebug

public class ExecutorDetails {
    public final int startTask;
    public final int endTask;

    //......

    @Override
    public boolean equals(Object other) {
        if (!(other instanceof ExecutorDetails)) {
            return false;
        }

        ExecutorDetails executor = (ExecutorDetails) other;
        return (this.startTask == executor.startTask) && (this.endTask == executor.endTask);
    }
}
  • ExecutorDetails雖然起名爲executor,可是裏頭封裝的是startTask及endTask信息
  • schedule的過程,實際上是將標記staskTask及endTask的任務分配給slot去處理
  • 注意這裏重寫了equals方法,根據startTask及endTask來對比,主要是前面的集合對比操做須要

Cluster.assign

storm-2.0.0/storm-server/src/main/java/org/apache/storm/scheduler/Cluster.javarest

/**
     * Assign the slot to the executors for this topology.
     *
     * @throws RuntimeException if the specified slot is already occupied.
     */
    public void assign(WorkerSlot slot, String topologyId, Collection<ExecutorDetails> executors) {
        assertValidTopologyForModification(topologyId);
        if (isSlotOccupied(slot)) {
            throw new RuntimeException(
                "slot: [" + slot.getNodeId() + ", " + slot.getPort() + "] is already occupied.");
        }

        TopologyDetails td = topologies.getById(topologyId);
        if (td == null) {
            throw new IllegalArgumentException(
                "Trying to schedule for topo "
                + topologyId
                + " but that is not a known topology "
                + topologies.getAllIds());
        }
        WorkerResources resources = calculateWorkerResources(td, executors);
        SchedulerAssignmentImpl assignment = assignments.get(topologyId);
        if (assignment == null) {
            assignment = new SchedulerAssignmentImpl(topologyId);
            assignments.put(topologyId, assignment);
        } else {
            for (ExecutorDetails executor : executors) {
                if (assignment.isExecutorAssigned(executor)) {
                    throw new RuntimeException(
                        "Attempting to assign executor: "
                        + executor
                        + " of topology: "
                        + topologyId
                        + " to workerslot: "
                        + slot
                        + ". The executor is already assigned to workerslot: "
                        + assignment.getExecutorToSlot().get(executor)
                        + ". The executor must unassigned before it can be assigned to another slot!");
                }
            }
        }

        assignment.assign(slot, executors, resources);
        String nodeId = slot.getNodeId();
        double sharedOffHeapMemory = calculateSharedOffHeapMemory(nodeId, assignment);
        assignment.setTotalSharedOffHeapMemory(nodeId, sharedOffHeapMemory);
        updateCachesForWorkerSlot(slot, resources, sharedOffHeapMemory);
        totalResourcesPerNodeCache.remove(slot.getNodeId());
    }
  • 這裏主要是委託給assignment.assign(slot, executors, resources)

SchedulerAssignmentImpl.assign

storm-2.0.0/storm-server/src/main/java/org/apache/storm/scheduler/SchedulerAssignmentImpl.java

/**
     * Assign the slot to executors.
     */
    public void assign(WorkerSlot slot, Collection<ExecutorDetails> executors, WorkerResources slotResources) {
        assert slot != null;
        for (ExecutorDetails executor : executors) {
            this.executorToSlot.put(executor, slot);
        }
        slotToExecutors.computeIfAbsent(slot, MAKE_LIST)
            .addAll(executors);
        if (slotResources != null) {
            resources.put(slot, slotResources);
        } else {
            resources.remove(slot);
        }
    }
  • 給executorDetail(startTask及endTask)分配slot

小結

  • Nimbus.mkAssignments承擔着調度分配的任務,主要計算newSchedulerAssignments(Map<String, SchedulerAssignmentImpl>,key爲topologyId),期間經過scheduler.schedule(topologies, cluster);進行調度
  • EvenScheduler.scheduleTopology方法是調度的核心操做,主要是對須要分配的ExecutorDetails分配slots,EvenScheduler採用的是robbin round的策略,對每一個reassignExecutor,按reassignSlots.get(i % reassignSlots.size())分配slot
  • ExecutorDetail裏頭有兩個屬性,一個是startTask,一個是endTask,分配的過程實際上是對這些task分配slot
  • 分配完以後,lockingMkAssignments裏頭有兩個操做,一個是state.setAssignment(topoId, assignment, td.getConf())將變更的assignment存儲到zk;另一個是調用notifySupervisorsAssignments方法,通知到supervisor,supervisor接收到以後更新本地內存

doc

相關文章
相關標籤/搜索