給一字符串, 對形式爲 a^i b^j c^k
的子序列進行計數, 即它由 i 個字符 a
, 接着是 j 個字符 b
, 而後是 k 個字符 c
組成, i >= 1, j >= 1, k >= 1.
Note: 若是兩個子序列在原字符串中的index集合是不一樣的,則認爲兩個子序列不一樣。markdown
給定 s = abbc
, 返回 3
子序列爲 abc
, abc
和 abbc
給定 s = abcabc
, 返回 7
子序列爲 abc
, abc
, abbc
, aabc
, abcc
, abc
和 abc
app
class Solution { public: /** * @param source: the input string * @return: the number of subsequences */ int countSubsequences(string &source) { // write your code here findPath(source,0,'\0'); return res; } void findPath(string & source, int index, char c){ if(c == '\0'){ for(int i = index; i < source.size(); ++i){ if(source[i] == 'a') findPath(source,i+1,'a'); } }else if(c == 'a' || c == 'b'){ for(int i = index; i < source.size(); ++i){ if(source[i] == c) findPath(source,i+1,c); } for(int i = index; i < source.size(); ++i){ if(source[i] == c+1) { if(c == 'b') ++res; //b以後碰到第一個c,結果+1 findPath(source,i+1,c+1); } } }else if(c == 'c'){ for(int i = index; i < source.size(); ++i){ if(source[i] == 'c') { findPath(source,i+1,'c'); ++res; //連續的c,結果+1 } } } } private: int res = 0; };
第二種思路是動態規劃,其中DPA,DPB,DPC分別表示到當前座標爲止,以'a'、'b'、'c'結尾的符合要求的前綴一共有幾個。大數據
遞推式爲:DPX[i] = DP(X-1)[i-1] + 2*DPX[i-1]。即從上一個字母第一次變成當前字母的數量加上以當前字母結尾的數量乘2(當前字母可取,可不取)。spa
時間複雜度O(n),空間複雜度O(n)。code
class Solution { public: /** * @param source: the input string * @return: the number of subsequences */ int countSubsequences(string &source) { // write your code here int size = source.size(); if(size < 3) return 0; vector<int> DPA(size,0); vector<int> DPB(size,0); vector<int> DPC(size,0); if(source[0] == 'a') DPA[0] = 1; for(int i = 1; i < size; ++i){ if(source[i] == 'a'){ DPA[i] = 2*DPA[i-1] + 1; DPB[i] = DPB[i-1]; //注意三個列表的同步 DPC[i] = DPC[i-1]; }else if(source[i] == 'b'){ DPA[i] = DPA[i-1]; DPB[i] = DPA[i-1] + DPB[i-1]*2; DPC[i] = DPC[i-1]; }else if(source[i] == 'c'){ DPA[i] = DPA[i-1]; DPB[i] = DPB[i-1]; DPC[i] = DPB[i-1] + DPC[i-1]*2; }else{ continue; } } return DPC[size-1]; } };