爲何Redis 單線程卻能支撐高併發?

做者:Dravenesshtml

原文:draveness.me/redis-io-multiplexingjava

linux

1. Java 性能優化:教你提升代碼運行的效率redis

2. 基於token的多平臺身份認證架構設計編程

3. Spring Boot整合JWT實現用戶認證(附源碼)設計模式

4. Springboot啓動原理解析api

最近在看 UNIX 網絡編程並研究了一下 Redis 的實現,感受 Redis 的源代碼十分適合閱讀和分析,其中 I/O 多路複用(mutiplexing)部分的實現很是乾淨和優雅,在這裏想對這部分的內容進行簡單的整理。數組

幾種 I/O 模型

爲何 Redis 中要使用 I/O 多路複用這種技術呢?性能優化

首先,Redis 是跑在單線程中的,全部的操做都是按照順序線性執行的,可是因爲讀寫操做等待用戶輸入或輸出都是阻塞的,因此 I/O 操做在通常狀況下每每不能直接返回,這會致使某一文件的 I/O 阻塞致使整個進程沒法對其它客戶提供服務,而 I/O 多路複用就是爲了解決這個問題而出現的。網絡

Blocking I/O

先來看一下傳統的阻塞 I/O 模型究竟是如何工做的:當使用 read 或者 write 對某一個文件描述符(File Descriptor 如下簡稱 FD)進行讀寫時,若是當前 FD 不可讀或不可寫,整個 Redis 服務就不會對其它的操做做出響應,致使整個服務不可用。

這也就是傳統意義上的,也就是咱們在編程中使用最多的阻塞模型:

爲何Redis 單線程卻能支撐高併發?

阻塞模型雖然開發中很是常見也很是易於理解,可是因爲它會影響其餘 FD 對應的服務,因此在須要處理多個客戶端任務的時候,每每都不會使用阻塞模型。

I/O 多路複用

雖然還有不少其它的 I/O 模型,可是在這裏都不會具體介紹。

阻塞式的 I/O 模型並不能知足這裏的需求,咱們須要一種效率更高的 I/O 模型來支撐 Redis 的多個客戶(redis-cli),這裏涉及的就是 I/O 多路複用模型了:

爲何Redis 單線程卻能支撐高併發?

在 I/O 多路複用模型中,最重要的函數調用就是 select,該方法的可以同時監控多個文件描述符的可讀可寫狀況,當其中的某些文件描述符可讀或者可寫時,select 方法就會返回可讀以及可寫的文件描述符個數。

關於 select 的具體使用方法,在網絡上資料不少,這裏就不過多展開介紹了;

與此同時也有其它的 I/O 多路複用函數 epoll/kqueue/evport,它們相比 select 性能更優秀,同時也能支撐更多的服務。

Reactor 設計模式

Redis 服務採用 Reactor 的方式來實現文件事件處理器(每個網絡鏈接其實都對應一個文件描述符)

爲何Redis 單線程卻能支撐高併發?

文件事件處理器使用 I/O 多路複用模塊同時監聽多個 FD,當 accept、read、write 和 close 文件事件產生時,文件事件處理器就會回調 FD 綁定的事件處理器。

雖然整個文件事件處理器是在單線程上運行的,可是經過 I/O 多路複用模塊的引入,實現了同時對多個 FD 讀寫的監控,提升了網絡通訊模型的性能,同時也能夠保證整個 Redis 服務實現的簡單。

I/O 多路複用模塊

I/O 多路複用模塊封裝了底層的 select、epoll、avport 以及 kqueue 這些 I/O 多路複用函數,爲上層提供了相同的接口。

爲何Redis 單線程卻能支撐高併發?

在這裏咱們簡單介紹 Redis 是如何包裝 select 和 epoll 的,簡要了解該模塊的功能,整個 I/O 多路複用模塊抹平了不一樣平臺上 I/O 多路複用函數的差別性,提供了相同的接口:

  • static int aeApiCreate(aeEventLoop *eventLoop)

  • static int aeApiResize(aeEventLoop *eventLoop, int setsize)

  • static void aeApiFree(aeEventLoop *eventLoop)

  • static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)

  • static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)

  • static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)

同時,由於各個函數所須要的參數不一樣,咱們在每個子模塊內部經過一個 aeApiState 來存儲須要的上下文信息:

// select
typedef struct aeApiState {
    fd_set rfds, wfds;
    fd_set _rfds, _wfds;
} aeApiState;

// epoll
typedef struct aeApiState {
    int epfd;
    struct epoll_event *events;
} aeApiState;

 

這些上下文信息會存儲在 eventLoop 的 void *state 中,不會暴露到上層,只在當前子模塊中使用。

封裝 select 函數

select 能夠監控 FD 的可讀、可寫以及出現錯誤的狀況。

在介紹 I/O 多路複用模塊如何對 select 函數封裝以前,先來看一下 select 函數使用的大體流程:

int fd = /* file descriptor */

fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds)

for ( ; ; ) {
    select(fd+1, &rfds, NULL, NULL, NULL);
    if (FD_ISSET(fd, &rfds)) {
        /* file descriptor `fd` becomes readable */
    }
}

 

  • 初始化一個可讀的 fd_set 集合,保存須要監控可讀性的 FD;

  • 使用 FD_SET 將 fd 加入 rfds;

  • 調用 select 方法監控 rfds 中的 FD 是否可讀;

  • 當 select 返回時,檢查 FD 的狀態並完成對應的操做。

而在 Redis 的 ae_select 文件中代碼的組織順序也是差很少的,首先在 aeApiCreate 函數中初始化 rfds 和 wfds:

static int aeApiCreate(aeEventLoop *eventLoop) {
    aeApiState *state = zmalloc(sizeof(aeApiState));
    if (!state) return -1;
    FD_ZERO(&state->rfds);
    FD_ZERO(&state->wfds);
    eventLoop->apidata = state;
    return 0;
}

 

而 aeApiAddEvent 和 aeApiDelEvent 會經過 FD_SET 和 FD_CLR 修改 fd_set 中對應 FD 的標誌位:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
    aeApiState *state = eventLoop->apidata;
    if (mask & AE_READABLE) FD_SET(fd,&state->rfds);
    if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);
    return 0;
}

 

整個 ae_select 子模塊中最重要的函數就是 aeApiPoll,它是實際調用 select 函數的部分,其做用就是在 I/O 多路複用函數返回時,將對應的 FD 加入 aeEventLoop 的 fired 數組中,並返回事件的個數:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
    aeApiState *state = eventLoop->apidata;
    int retval, j, numevents = 0;

    memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));
    memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));

    retval = select(eventLoop->maxfd+1,
                &state->_rfds,&state->_wfds,NULL,tvp);
    if (retval > 0) {
        for (j = 0; j <= eventLoop->maxfd; j++) {
            int mask = 0;
            aeFileEvent *fe = &eventLoop->events[j];

            if (fe->mask == AE_NONE) continue;
            if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))
                mask |= AE_READABLE;
            if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))
                mask |= AE_WRITABLE;
            eventLoop->fired[numevents].fd = j;
            eventLoop->fired[numevents].mask = mask;
            numevents++;
        }
    }
    return numevents;
}

 

封裝 epoll 函數

Redis 對 epoll 的封裝其實也是相似的,使用 epoll_create 建立 epoll 中使用的 epfd:

static int aeApiCreate(aeEventLoop *eventLoop) {
    aeApiState *state = zmalloc(sizeof(aeApiState));

    if (!state) return -1;
    state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);
    if (!state->events) {
        zfree(state);
        return -1;
    }
    state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */
    if (state->epfd == -1) {
        zfree(state->events);
        zfree(state);
        return -1;
    }
    eventLoop->apidata = state;
    return 0;
}

 

在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加須要監控的 FD 以及監聽的事件:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
    aeApiState *state = eventLoop->apidata;
    struct epoll_event ee = {0}; /* avoid valgrind warning */
    /* If the fd was already monitored for some event, we need a MOD
     * operation. Otherwise we need an ADD operation. */
    int op = eventLoop->events[fd].mask == AE_NONE ?
            EPOLL_CTL_ADD : EPOLL_CTL_MOD;

    ee.events = 0;
    mask |= eventLoop->events[fd].mask; /* Merge old events */
    if (mask & AE_READABLE) ee.events |= EPOLLIN;
    if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
    ee.data.fd = fd;
    if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;
    return 0;
}

 

因爲 epoll 相比 select 機制略有不一樣,在 epoll_wait 函數返回時並不須要遍歷全部的 FD 查看讀寫狀況;在 epoll_wait 函數返回時會提供一個 epoll_event 數組:

typedef union epoll_data {
    void    *ptr;
    int      fd; /* 文件描述符 */
    uint32_t u32;
    uint64_t u64;
} epoll_data_t;

struct epoll_event {
    uint32_t     events; /* Epoll 事件 */
    epoll_data_t data;
};

 

其中保存了發生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及發生該事件的 FD。

aeApiPoll 函數只須要將 epoll_event 數組中存儲的信息加入 eventLoop 的 fired 數組中,將信息傳遞給上層模塊:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
    aeApiState *state = eventLoop->apidata;
    int retval, numevents = 0;

    retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,
            tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);
    if (retval > 0) {
        int j;

        numevents = retval;
        for (j = 0; j < numevents; j++) {
            int mask = 0;
            struct epoll_event *e = state->events+j;

            if (e->events & EPOLLIN) mask |= AE_READABLE;
            if (e->events & EPOLLOUT) mask |= AE_WRITABLE;
            if (e->events & EPOLLERR) mask |= AE_WRITABLE;
            if (e->events & EPOLLHUP) mask |= AE_WRITABLE;
            eventLoop->fired[j].fd = e->data.fd;
            eventLoop->fired[j].mask = mask;
        }
    }
    return numevents;
}

 

子模塊的選擇

由於 Redis 須要在多個平臺上運行,同時爲了最大化執行的效率與性能,因此會根據編譯平臺的不一樣選擇不一樣的 I/O 多路複用函數做爲子模塊,提供給上層統一的接口;在 Redis 中,咱們經過宏定義的使用,合理的選擇不一樣的子模塊:

#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
    #ifdef HAVE_EPOLL
    #include "ae_epoll.c"
    #else
        #ifdef HAVE_KQUEUE
        #include "ae_kqueue.c"
        #else
        #include "ae_select.c"
        #endif
    #endif
#endif

 

由於 select 函數是做爲 POSIX 標準中的系統調用,在不一樣版本的操做系統上都會實現,因此將其做爲保底方案:

爲何Redis 單線程卻能支撐高併發?

Redis 會優先選擇時間複雜度爲 $O(1)$ 的 I/O 多路複用函數做爲底層實現,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的這些函數都使用了內核內部的結構,而且可以服務幾十萬的文件描述符。

可是若是當前編譯環境沒有上述函數,就會選擇 select 做爲備選方案,因爲其在使用時會掃描所有監聽的描述符,因此其時間複雜度較差 $O(n)$,而且只能同時服務 1024 個文件描述符,因此通常並不會以 select 做爲第一方案使用。

總結

Redis 對於 I/O 多路複用模塊的設計很是簡潔,經過宏保證了 I/O 多路複用模塊在不一樣平臺上都有着優異的性能,將不一樣的 I/O 多路複用函數封裝成相同的 API 提供給上層使用。

整個模塊使 Redis 能以單進程運行的同時服務成千上萬個文件描述符,避免了因爲多進程應用的引入致使代碼實現複雜度的提高,減小了出錯的可能性。

參考

http://man7.org/linux/man-pages/man2/select.2.htmlhttps://en.wikipedia.org/wiki/Reactor_patternhttps://people.eecs.berkeley.edu/~sangjin/2012/12/21/epoll-vs-kqueue.html

相關文章
相關標籤/搜索