算法導論讀書筆記(14) - 二叉查找樹的具體實現

算法導論讀書筆記(14) - 二叉查找樹的具體實現

二叉查找樹的簡單Java實現

/**
 * 二叉查找樹
 * 部分代碼參考自TreeMap的源碼
 */
public class BinarySearchTree<T> {
    protected TreeNode<T> root = null;
    private final Comparator<? super T> comparator;
    private int size = 0;

    public BinarySearchTree() {
        comparator = null;
    }

    public BinarySearchTree(Comparator<? super T> comparator) {
        this.comparator = comparator;
    }

    /**
     * 向樹中插入新結點
     *
     * @param key 新結點的key值
     */
    public void insert(T key) {
        TreeNode<T> x = root;
        TreeNode<T> y = null;
        TreeNode<T> z = new TreeNode<T>(key, null);
        int cmp;
        if (x == null) {    // 若是根結點是null,則新插入結點成爲根結點
            root = z;
            size = 1;
            return;
        }
        while (x != null) { // x從根結點開始沿樹降低,直到找到z應當插入的位置。y用於找出z的父結點的位置
            y = x;
            cmp = compareKey(z.key, x.key);
            if (cmp < 0)
                x = x.left;
            else
                x = x.right;
        }
        z.parent = y;
        cmp = compareKey(z.key, y.key);
        if (cmp < 0)
            y.left = z;
        else
            y.right = z;
        size++;
    }

    /**
     * 刪除樹中某個結點
     *
     * @param key 待刪除結點的key值
     * @return 被刪除結點的key值
     */
    public T remove(T key) {
        TreeNode<T> p = find(key);
        if (p == null)
            return null;
        T oldValue = p.key;
        deleteNode(p);
        return oldValue;
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    public int size() {
        return size;
    }

    /**
     * 返回二叉查找樹中最左子結點
     *
     * @return 返回二叉查找樹中最左子結點
     */
    public TreeNode<T> firstNode() {
        return getFirstNode(root);
    }

    /**
     * 返回二叉查找樹中最右子結點
     *
     * @return 返回二叉查找樹中最右子結點
     */
    public TreeNode<T> lastNode() {
        return getLastNode(root);
    }

    /**
     * 根據key值查找結點
     */
    public TreeNode<T> find(T t) {
        TreeNode<T> p = root;
        while (p != null) {
            int cmp = compareKey(t, p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    /**
     * 返回結點集
     */
    public Set<TreeNode<T>> nodeSet() {
        return new NodeSet();
    }

    /**
     * 返回傳入結點的後繼結點
     */
    private static <T> TreeNode<T> successor(TreeNode<T> t) {
        if (t == null)
            return null;
        else if (t.right != null)   // 若是t的右子樹不空,那麼t的後繼就是其右子樹中key值最小的結點
            return getFirstNode(t.right);
        else {  // 若是t的右子樹爲空,左子樹不空,那麼t的後繼就是t的一個最低祖先結點,且該結點的左孩子也必須是t的祖先結點
            TreeNode<T> p = t.parent;
            TreeNode<T> ch = t;
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    /**
     * 返回傳入結點的前趨結點
     */
    private static <T> TreeNode<T> predecessor(TreeNode<T> t) {
        if (t == null)
            return null;
        else if (t.left != null)
            return getLastNode(t.left);
        else {
            TreeNode<T> p = t.parent;
            TreeNode<T> ch = t;
            while (p != null && ch == p.left) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    private static <T> TreeNode<T> getFirstNode(TreeNode<T> t) {
        TreeNode<T> p = t;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

    private static <T> TreeNode<T> getLastNode(TreeNode<T> t) {
        TreeNode<T> p = t;
        if (p != null)
            while (p.right != null)
                p = p.right;
        return p;
    }

    /**
     * 用結點v替換結點u在樹中的位置
     */
    private void transplant(TreeNode<T> u, TreeNode<T> v) {
        if (u.parent == null)
            root = v;
        else if (u == u.parent.left)
            u.parent.left = v;
        else
            u.parent.right = v;
        if (v != null)
            v.parent = u.parent;
    }

    /**
     * 刪除樹中的結點
     */
    private void deleteNode(TreeNode<T> p) {
        size--;
        if (p.left == null) // 若是結點的左子樹爲空,則用右子樹替換結點
            transplant(p, p.right);
        else if (p.right == null)   // 若是結點的右子樹爲空,則用左子樹替換結點
            transplant(p, p.left);
        else {  // 結點有兩個子結點
            TreeNode<T> y = getFirstNode(p.right); // 首先找出結點p的後繼y
            if (y.parent != p) {    // 若是p不是y的父結點,那麼須要用y的右孩子替換y
                transplant(y, y.right);
                y.right = p.right;
                y.right.parent = y;
            }
            transplant(p, y);   // 最後用y替換p
            y.left = p.left;
            y.left.parent = y;
        }
    }

    /**
     * 用於比較樹中結點的key值
     */
    private int compareKey(T key1, T key2) {
        int cmp;
        if (comparator != null)
            cmp = comparator.compare(key1, key2);
        else {
            if (key1 == null || key2 == null)
                throw new NullPointerException();
            Comparable<? super T> k = (Comparable<? super T>) key1;
            cmp = k.compareTo(key2);
        }
        return cmp;
    }

    private static boolean keyEquals(Object o1, Object o2) {
        return (o1 == null ? o2 == null : o1.equals(o2));
    }

    /**
     * 二叉查找樹的結點類
     */
    public static final class TreeNode<T> {
        T key;
        TreeNode<T> left = null;
        TreeNode<T> right = null;
        TreeNode<T> parent;

        TreeNode(T key, TreeNode<T> parent) {
            this.key = key;
            this.parent = parent;
        }

        public T getKey() {
            return key;
        }

        public boolean equals(Object o) {
            if (!(o instanceof TreeNode))
                return false;
            TreeNode<?> e = (TreeNode<?>) o;
            return keyEquals(key, e.getKey());
        }

        public String toString() {
            return "[" + key + "]";
        }
    }

    /**
     * 樹中結點的集合類,使用迭代器遍歷,從最左結點開始,依次取其後繼結點(即中序遍歷)
     */
    final class NodeSet extends AbstractSet<TreeNode<T>> {
        public Iterator<TreeNode<T>> iterator() {
            return new NodeIterator(firstNode());
        }

        public int size() {
            return BinarySearchTree.this.size();
        }
    }

    final class NodeIterator extends PrivateNodeIterator<TreeNode<T>> {
        NodeIterator(TreeNode<T> first) {
            super(first);
        }

        public TreeNode<T> next() {
            return nextNode();
        }

        public void remove() { }
    }

    abstract class PrivateNodeIterator<E> implements Iterator<E> {
        TreeNode<T> next;

        PrivateNodeIterator(TreeNode<T> first) {
            next = first;
        }

        public boolean hasNext() {
            return next != null;
        }

        final TreeNode<T> nextNode() {
            TreeNode<T> e = next;
            if (e == null)
                throw new NoSuchElementException();
            next = successor(e);
            return e;
        }
    }
}
相關文章
相關標籤/搜索