簡介:驗證碼主要用於防刷,傳統的驗證碼識別算法通常須要把驗證碼分割爲單個字符,而後逐個識別,若是字符之間相互重疊,傳統的算法就然並卵了,本文采用cnn對驗證碼進行總體識別。
主要涉及:python
sudo pip install captcha
生成驗證碼訓練數據git
全部的模型訓練,數據是王道,本文采用 captcha 庫生成驗證碼,captcha 能夠生成語音和圖片驗證碼,咱們採用生成圖片驗證碼功能,驗證碼是由數字、大寫字母、小寫字母組成(固然你也能夠根據本身的需求調整,好比添加一些特殊字符),長度爲 4,因此總共有 62^4 種組合驗證碼。算法
驗證碼生成器ubuntu
採用 python 中生成器方式來生成咱們的訓練數據,這樣的好處是,不須要提早生成大量的數據,訓練過程當中生成數據,而且能夠無限生成數據。dom
示例代碼:ide
在 /home/ubuntu 目錄下建立源文件 generate_captcha.py,內容可參考:學習
示例代碼:測試
/home/ubuntu/generate_captcha.pyui
#!/usr/bin/python # -*- coding: utf-8 -* from captcha.image import ImageCaptcha from PIL import Image import numpy as np import random import string class generateCaptcha(): def __init__(self, width = 160,#驗證碼圖片的寬 height = 60,#驗證碼圖片的高 char_num = 4,#驗證碼字符個數 characters = string.digits + string.ascii_uppercase + string.ascii_lowercase):#驗證碼組成,數字+大寫字母+小寫字母 self.width = width self.height = height self.char_num = char_num self.characters = characters self.classes = len(characters) def gen_captcha(self,batch_size = 50): X = np.zeros([batch_size,self.height,self.width,1]) img = np.zeros((self.height,self.width),dtype=np.uint8) Y = np.zeros([batch_size,self.char_num,self.classes]) image = ImageCaptcha(width = self.width,height = self.height) while True: for i in range(batch_size): captcha_str = ''.join(random.sample(self.characters,self.char_num)) img = image.generate_image(captcha_str).convert('L') img = np.array(img.getdata()) X[i] = np.reshape(img,[self.height,self.width,1])/255.0 for j,ch in enumerate(captcha_str): Y[i,j,self.characters.find(ch)] = 1 Y = np.reshape(Y,(batch_size,self.char_num*self.classes)) yield X,Y def decode_captcha(self,y): y = np.reshape(y,(len(y),self.char_num,self.classes)) return ''.join(self.characters[x] for x in np.argmax(y,axis = 2)[0,:]) def get_parameter(self): return self.width,self.height,self.char_num,self.characters,self.classes def gen_test_captcha(self): image = ImageCaptcha(width = self.width,height = self.height) captcha_str = ''.join(random.sample(self.characters,self.char_num)) img = image.generate_image(captcha_str) img.save(captcha_str + '.jpg')
而後執行:編碼
cd /home/ubuntu;
python
import generate_captcha
g = generate_captcha.generateCaptcha()
g.gen_test_captcha()
執行結果:
在 /home/ubuntu 目錄下查看生成的驗證碼,jpg 格式的圖片能夠點擊查看。
將驗證碼識別問題轉化爲分類問題,總共 62^4 種類型,採用 4 個 one-hot 編碼分別表示 4 個字符取值。
cnn 驗證碼識別模型
3 層隱藏層、2 層全鏈接層,對每層都進行 dropout。input——>conv——>pool——>dropout——>conv——>pool——>dropout——>conv——>pool——>dropout——>fully connected layer——>dropout——>fully connected layer——>output
示例代碼:
如今您能夠在 /home/ubuntu 目錄下建立源文件 captcha_model.py,內容可參考:
示例代碼:
/home/ubuntu/captcha_model.py
#!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as tf import math class captchaModel(): def __init__(self, width = 160, height = 60, char_num = 4, classes = 62): self.width = width self.height = height self.char_num = char_num self.classes = classes def conv2d(self,x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(self,x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def weight_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(self,shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def create_model(self,x_images,keep_prob): #first layer w_conv1 = self.weight_variable([5, 5, 1, 32]) b_conv1 = self.bias_variable([32]) h_conv1 = tf.nn.relu(tf.nn.bias_add(self.conv2d(x_images, w_conv1), b_conv1)) h_pool1 = self.max_pool_2x2(h_conv1) h_dropout1 = tf.nn.dropout(h_pool1,keep_prob) conv_width = math.ceil(self.width/2) conv_height = math.ceil(self.height/2) #second layer w_conv2 = self.weight_variable([5, 5, 32, 64]) b_conv2 = self.bias_variable([64]) h_conv2 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout1, w_conv2), b_conv2)) h_pool2 = self.max_pool_2x2(h_conv2) h_dropout2 = tf.nn.dropout(h_pool2,keep_prob) conv_width = math.ceil(conv_width/2) conv_height = math.ceil(conv_height/2) #third layer w_conv3 = self.weight_variable([5, 5, 64, 64]) b_conv3 = self.bias_variable([64]) h_conv3 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout2, w_conv3), b_conv3)) h_pool3 = self.max_pool_2x2(h_conv3) h_dropout3 = tf.nn.dropout(h_pool3,keep_prob) conv_width = math.ceil(conv_width/2) conv_height = math.ceil(conv_height/2) #first fully layer conv_width = int(conv_width) conv_height = int(conv_height) w_fc1 = self.weight_variable([64*conv_width*conv_height,1024]) b_fc1 = self.bias_variable([1024]) h_dropout3_flat = tf.reshape(h_dropout3,[-1,64*conv_width*conv_height]) h_fc1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(h_dropout3_flat, w_fc1), b_fc1)) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #second fully layer w_fc2 = self.weight_variable([1024,self.char_num*self.classes]) b_fc2 = self.bias_variable([self.char_num*self.classes]) y_conv = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2) return y_conv
訓練 cnn 驗證碼識別模型
每批次採用 64 個訓練樣本,每 100 次循環採用 100 個測試樣本檢查識別準確度,當準確度大於 99% 時,訓練結束,採用 GPU 須要 5-6 個小時左右,CPU 大概須要 20 個小時左右。
注:做爲實驗,你能夠經過調整 train_captcha.py 文件中 if acc > 0.99: 代碼行的準確度節省訓練時間(好比將 0.99 爲 0.01);同時,咱們已經經過長時間的訓練獲得了一個訓練集,能夠經過以下命令將訓練集下載到本地。
wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/capcha_model.zip
unzip capcha_model.zip
如今能夠在 /home/ubuntu 目錄下建立源文件 train_captcha.py,內容可參考:
示例代碼:/home/ubuntu/train_captcha.py
#!/usr/bin/python import tensorflow as tf import numpy as np import string import generate_captcha import captcha_model if __name__ == '__main__': captcha = generate_captcha.generateCaptcha() width,height,char_num,characters,classes = captcha.get_parameter() x = tf.placeholder(tf.float32, [None, height,width,1]) y_ = tf.placeholder(tf.float32, [None, char_num*classes]) keep_prob = tf.placeholder(tf.float32) model = captcha_model.captchaModel(width,height,char_num,classes) y_conv = model.create_model(x,keep_prob) cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_,logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) predict = tf.reshape(y_conv, [-1,char_num, classes]) real = tf.reshape(y_,[-1,char_num, classes]) correct_prediction = tf.equal(tf.argmax(predict,2), tf.argmax(real,2)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x,batch_y = next(captcha.gen_captcha(64)) _,loss = sess.run([train_step,cross_entropy],feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.75}) print ('step:%d,loss:%f' % (step,loss)) if step % 100 == 0: batch_x_test,batch_y_test = next(captcha.gen_captcha(100)) acc = sess.run(accuracy, feed_dict={x: batch_x_test, y_: batch_y_test, keep_prob: 1.}) print ('###############################################step:%d,accuracy:%f' % (step,acc)) if acc > 0.99: saver.save(sess,"capcha_model.ckpt") break step += 1
而後執行:
cd /home/ubuntu;
python train_captcha.py
執行結果:
step:75173,loss:0.010555 step:75174,loss:0.009410 step:75175,loss:0.009978 step:75176,loss:0.008089 step:75177,loss:0.009949 step:75178,loss:0.010126 step:75179,loss:0.009584 step:75180,loss:0.012272 step:75181,loss:0.010157 step:75182,loss:0.009529 step:75183,loss:0.007636 step:75184,loss:0.009058 step:75185,loss:0.010061 step:75186,loss:0.009941 step:75187,loss:0.009339 step:75188,loss:0.009685 step:75189,loss:0.009879 step:75190,loss:0.007799 step:75191,loss:0.010866 step:75192,loss:0.009838 step:75193,loss:0.010931 step:75194,loss:0.012859 step:75195,loss:0.008747 step:75196,loss:0.009147 step:75197,loss:0.009351 step:75198,loss:0.009746 step:75199,loss:0.010014 step:75200,loss:0.009024 ###############################################step:75200,accuracy:0.992500
示例代碼:
如今您能夠在 /home/ubuntu 目錄下建立源文件 predict_captcha.py,內容可參考:
示例代碼:/home/ubuntu/predict_captcha.py
#!/usr/bin/python from PIL import Image, ImageFilter import tensorflow as tf import numpy as np import string import sys import generate_captcha import captcha_model if __name__ == '__main__': captcha = generate_captcha.generateCaptcha() width,height,char_num,characters,classes = captcha.get_parameter() gray_image = Image.open(sys.argv[1]).convert('L') img = np.array(gray_image.getdata()) test_x = np.reshape(img,[height,width,1])/255.0 x = tf.placeholder(tf.float32, [None, height,width,1]) keep_prob = tf.placeholder(tf.float32) model = captcha_model.captchaModel(width,height,char_num,classes) y_conv = model.create_model(x,keep_prob) predict = tf.argmax(tf.reshape(y_conv, [-1,char_num, classes]),2) init_op = tf.global_variables_initializer() saver = tf.train.Saver() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95) with tf.Session(config=tf.ConfigProto(log_device_placement=False,gpu_options=gpu_options)) as sess: sess.run(init_op) saver.restore(sess, "capcha_model.ckpt") pre_list = sess.run(predict,feed_dict={x: [test_x], keep_prob: 1}) for i in pre_list: s = '' for j in i: s += characters[j] print s
而後執行:
cd /home/ubuntu;
python predict_captcha.py Kz2J.jpg
執行結果:
Kz2J
注:由於實驗時間的限制,你可能調整了準確度致使執行結果不符合預期,屬於正常狀況。
在訓練時間足夠長的狀況下,你能夠採用驗證碼生成器生成測試數據,cnn 訓練出來的驗證碼識別模型仍是很強大的,大小寫的 z 均可以區分,甚至有時候人都沒法區分,該模型也能夠正確的識別。