使用tensorflow深度學習識別驗證碼

除了傳統的PIL包處理圖片,而後用pytessert+OCR識別意外,還能夠使用tessorflow訓練來識別驗證碼。python

此篇代碼大部分是轉載的,只改了不多地方。linux

代碼是運行在linux環境,tessorflow沒有支持windows的python 2.7。git

 

gen_captcha.py代碼。windows

#coding=utf-8
from captcha.image import ImageCaptcha  # pip install captcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random

# 驗證碼中的字符, 就不用漢字了

number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',
            'v', 'w', 'x', 'y', 'z']

ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
            'V', 'W', 'X', 'Y', 'Z']
'''
number=['0','1','2','3','4','5','6','7','8','9']
alphabet =[]
ALPHABET =[]
'''

# 驗證碼通常都無視大小寫;驗證碼長度4個字符
def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4):
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text


# 生成字符對應的驗證碼
def gen_captcha_text_and_image():
    while(1):
        image = ImageCaptcha()

        captcha_text = random_captcha_text()
        captcha_text = ''.join(captcha_text)

        captcha = image.generate(captcha_text)
        #image.write(captcha_text, captcha_text + '.jpg')  # 寫到文件

        captcha_image = Image.open(captcha)
        #captcha_image.show()
        captcha_image = np.array(captcha_image)
        if captcha_image.shape==(60,160,3):
            break

    return captcha_text, captcha_image






if __name__ == '__main__':
    # 測試
    text, image = gen_captcha_text_and_image()
    print image
    gray = np.mean(image, -1)
    print gray

    print image.shape
    print gray.shape
    f = plt.figure()
    ax = f.add_subplot(111)
    ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
    plt.imshow(image)

    plt.show()

 

 

train.py代碼。app

#coding=utf-8
from gen_captcha import gen_captcha_text_and_image
from gen_captcha import number
from gen_captcha import alphabet
from gen_captcha import ALPHABET

import numpy as np
import tensorflow as tf

"""
text, image = gen_captcha_text_and_image()
print  "驗證碼圖像channel:", image.shape  # (60, 160, 3)
# 圖像大小
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = len(text)
print   "驗證碼文本最長字符數", MAX_CAPTCHA  # 驗證碼最長4字符; 我所有固定爲4,能夠不固定. 若是驗證碼長度小於4,用'_'補齊
"""
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = 4

# 把彩色圖像轉爲灰度圖像(色彩對識別驗證碼沒有什麼用)
def convert2gray(img):
    if len(img.shape) > 2:
        gray = np.mean(img, -1)
        # 上面的轉法較快,正規轉法以下
        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
        return gray
    else:
        return img


"""
cnn在圖像大小是2的倍數時性能最高, 若是你用的圖像大小不是2的倍數,能夠在圖像邊緣補無用像素。
np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))  # 在圖像上補2行,下補3行,左補2行,右補2行
"""

# 文本轉向量
char_set = number + alphabet + ALPHABET + ['_']  # 若是驗證碼長度小於4, '_'用來補齊
CHAR_SET_LEN = len(char_set)


def text2vec(text):
    text_len = len(text)
    if text_len > MAX_CAPTCHA:
        raise ValueError('驗證碼最長4個字符')

    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

    def char2pos(c):
        if c == '_':
            k = 62
            return k
        k = ord(c) - 48
        if k > 9:
            k = ord(c) - 55
            if k > 35:
                k = ord(c) - 61
                if k > 61:
                    raise ValueError('No Map')
        return k

    for i, c in enumerate(text):
        #print text
        idx = i * CHAR_SET_LEN + char2pos(c)
        #print i,CHAR_SET_LEN,char2pos(c),idx
        vector[idx] = 1
    return vector

#print text2vec('1aZ_')

# 向量轉回文本
def vec2text(vec):
    char_pos = vec.nonzero()[0]
    text = []
    for i, c in enumerate(char_pos):
        char_at_pos = i  # c/63
        char_idx = c % CHAR_SET_LEN
        if char_idx < 10:
            char_code = char_idx + ord('0')
        elif char_idx < 36:
            char_code = char_idx - 10 + ord('A')
        elif char_idx < 62:
            char_code = char_idx - 36 + ord('a')
        elif char_idx == 62:
            char_code = ord('_')
        else:
            raise ValueError('error')
        text.append(chr(char_code))
    return "".join(text)


"""
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1編碼 每63個編碼一個字符,這樣順利有,字符也有
vec = text2vec("F5Sd")
text = vec2text(vec)
print(text)  # F5Sd
vec = text2vec("SFd5")
text = vec2text(vec)
print(text)  # SFd5
"""


# 生成一個訓練batch
def get_next_batch(batch_size=128):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    # 有時生成圖像大小不是(60, 160, 3)
    def wrap_gen_captcha_text_and_image():
        while True:
            text, image = gen_captcha_text_and_image()
            if image.shape == (60, 160, 3):
                return text, image

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image()
        image = convert2gray(image)

        batch_x[i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean爲0
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y


####################################################################

X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32)  # dropout


# 定義CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
    # w_c2_alpha = np.sqrt(2.0/(3*3*32))
    # w_c3_alpha = np.sqrt(2.0/(3*3*64))
    # w_d1_alpha = np.sqrt(2.0/(8*32*64))
    # out_alpha = np.sqrt(2.0/1024)

    # 3 conv layer
    w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
    b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv1 = tf.nn.dropout(conv1, keep_prob)

    w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv2 = tf.nn.dropout(conv2, keep_prob)

    w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # Fully connected layer
    w_d = tf.Variable(w_alpha * tf.random_normal([8 * 32 * 40, 1024]))
    b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)

    w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
    out = tf.add(tf.matmul(dense, w_out), b_out)
    # out = tf.nn.softmax(out)
    return out


# 訓練
def train_crack_captcha_cnn():
    import time
    start_time=time.time()
    output = crack_captcha_cnn()
    # loss
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
    # 最後一層用來分類的softmax和sigmoid有什麼不一樣?
    # optimizer 爲了加快訓練 learning_rate應該開始大,而後慢慢衰
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
    max_idx_p = tf.argmax(predict, 2)
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    correct_pred = tf.equal(max_idx_p, max_idx_l)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        step = 0
        while True:
            batch_x, batch_y = get_next_batch(64)
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
            print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),step, loss_

            # 每100 step計算一次準確率
            if step % 100 == 0:
                batch_x_test, batch_y_test = get_next_batch(100)
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
                print u'***************************************************************第%s次的準確率爲%s'%(step, acc)
                # 若是準確率大於50%,保存模型,完成訓練
                if acc > 0.9:                  ##我這裏設了0.9,設得越大訓練要花的時間越長,若是設得過於接近1,很難達到。若是使用cpu,花的時間很長,cpu佔用很高電腦發燙。
                    saver.save(sess, "crack_capcha.model", global_step=step)
                    print time.time()-start_time
                    break

            step += 1


train_crack_captcha_cnn()

 

測試代碼:dom

output = crack_captcha_cnn()
saver = tf.train.Saver()
sess = tf.Session()
saver.restore(sess, tf.train.latest_checkpoint('.'))

while(1):
   

    text, image = gen_captcha_text_and_image()
    image = convert2gray(image)
    image = image.flatten() / 255





    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})
    predict_text = text_list[0].tolist()

    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
    i = 0
    for t in predict_text:
        vector[i * 63 + t] = 1
        i += 1
        # break



    print("正確: {}  預測: {}".format(text, vec2text(vector)))

 

 

若是想要快點測試代碼效果,驗證碼的字符不要設置太多,例如0123這幾個數字就能夠了。ide

相關文章
相關標籤/搜索