import torch內存
import numpy as npit
#自動擴張,或者叫作廣播,不須要拷貝數據.ast
#若是前面沒有維度,則在前面插入一個新的維度;import
#對齊時默認從後面開始對齊.numpy
#broading cast 能夠簡化運算而且減小內存拷貝.im
a = torch.randn(4,3)數據
b = torch.rand(4,3)di
c = a + bcas
c = torch.randn(1,3)
d = a+ c
#拼接1:
a = torch.randn(5,32,48)
b = torch.randn(4,32,48)
c = torch.cat([a,b],dim=0)#在第0維度合併
print(c.shape)#torch.Size([9, 32, 48])
print(torch.cat([a,b]).shape)#默認拼接按照0維
#拼接2 stack會建立新的維度,注意其形狀必須匹配
a = torch.randn(32,8)
b = torch.randn(32,8)
d = torch.stack([a,b],dim=2)#torch.Size([32, 8, 2])
print(d.shape)
#拆分split 長度拆分,如[1,2,3,4,5,6]指定拆分長度2,則拆分爲三個單元
a = torch.randn(2,32,8)
b = a.split(1,dim=0)#第0個維度拆分
print(type(b))
#按數量區分
print(a.chunk(2,dim=0))