決策樹的生成與測試

from math import log
import operatorapp

def calcShannonEnt(dataSet):
    numEntries=len(dataSet)
    labelCounts={}
    for featVec in dataSet:
        currentLabel=featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1
    shannonEnt=0.0
    for key in labelCounts:
        prob=float(labelCounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
    return shannonEntip

def createDataSet():
    dataSet=[[1,1,'yes'],
            [1,1,'yes'],
            [1,0,'no'],
            [0,1,'no'],
            [0,1,'no']]
    labels=['no surfacing','flippers']
    return dataSet,labelsci

def splitDataSet(dataSet,axis,value):
    retDataSet=[]
    for featVec in dataSet:
        if featVec[axis]==value:
            reducedFeatVec=featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSetget

def chooseBestFeatureToSplit(dataSet):
    numFeatures=len(dataSet[0])-1
    baseEntropy=calcShannonEnt(dataSet)
    bestInfoGain=0.0;bestFeature=-1
    for i in range(numFeatures):
        featList=[example[i] for example in dataSet]
        uniquevals=set(featList)
        newEntropy=0.0
        for value in uniquevals:
            subDataSet=splitDataSet(dataSet,i,value)
            prob=len(subDataSet)/float(len(dataSet))
            newEntropy+=prob*calcShannonEnt(subDataSet)
        infoGain=baseEntropy-newEntropy
        if infoGain>bestInfoGain:
            bestInfoGain=infoGain
            bestFeature=i
    return bestFeatureinput

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys():classCount[vote]=0
        classCount[vote]+=1
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),
                            reverse=True)
    return sortedClassCount[0][0]it

def createTree(dataSet,labels):
    classList=[example[-1] for example in dataSet]
    if classList.count(classList[0])==len(classList):
        return classList[0]
    if len(dataSet[0])==1:
        return majorityCnt(classList)
    bestFeat=chooseBestFeatureToSplit(dataSet)
    bestFeatLabel=labels[bestFeat]
    myTree={bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues=[example[bestFeat] for example in dataSet]
    uniqueVals=set(featValues)
    for value in uniqueVals:
        sublabel=labels[:]
        myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),sublabel)
    return myTreeast

def classify(inputTree,featLabels,testVec):
    firstStr=list(inputTree.keys())[0]
    secondDict=inputTree[firstStr]
    print('featlabels',featLabels)
    print('firstStr',firstStr)
    featIndex=featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex]==key:
            if type(secondDict[key]).__name__=='dict':
                classLabel=classify(secondDict[key],featLabels,testVec)
            else: classLabel=secondDict[key]
    return classLabelclass

def storeTree(inputTree,filename):
    import pickle
    fw=open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
def grabTree(filename):
    import pickle
    fr=open(filename)
    return pickle.load(fr)test

if __name__=='__main__':
    #myDat,labels=createDataSet()
    #print('labels',labels)
    #labels_1=labels.copy()
    #shannonEnt=calcShannonEnt(myDat)
    #myDat_sub=splitDataSet(myDat,0,1)
    #shannonEnt = calcShannonEnt(myDat_sub)
    #feature=chooseBestFeatureToSplit(myDat)
    #myTree=createTree(myDat,labels_1)
    #print('labels1',labels)
    #classLabel=classify(myTree,labels,[1,1])
    #print(classLabel)
    fr=open('lenses.txt')
    lenses=[inst.strip().split('\t') for inst in fr.readlines()]
    lensesLabels=['age','prescript','astigmatic','tearRate']
    lensesLabels_1=lensesLabels.copy()
    lensesTree=createTree(lenses,lensesLabels_1)import

    print(lenses)  

相關文章
相關標籤/搜索